conditioning an algorithm

A question of interest on X validated: given a (possibly black-box) algorithm simulating from a joint distribution with density [wrt a continuous measure] p(z,y) (how) is it possible to simulate from the conditional p(y|z⁰)? Which reminded me of a recent paper by Lindqvist et al. on conditional Monte Carlo. Which zooms on the simulation of a sample X given the value of a sufficient statistic, T(X)=t, revolving about pivotal quantities and inversions à la fiducial statistics, following an earlier Biometrika paper by Lindqvist & Taraldsen, in 2005. The idea is to write

X=\chi(U,\theta)\qquad T(X)=\tau(U,\theta)

where U has a distribution that depends on θ, to solve τ(u,θ)=t in θ for a given pair (u,t) with solution θ(u,t) and to generate u conditional on this solution. But this requires getting “under the hood” of the algorithm to such an extent as not answering the original question, or being open to other solutions using the expression for the joint density p(z,y)… In a purely black box situation, ABC appears as the natural if approximate solution.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: