One World ABC seminar [31.3.22]

The next One World ABC seminar is on Thursday 31 March, with David Warnes (from QUT) talking on Multifidelity multilevel Monte Carlo for approximate Bayesian computation It will take place at 10:30 CET (GMT+1).

Models of stochastic processes are widely used in almost all fields of science. However, data are almost always incomplete observations of reality. This leads to a great challenge for statistical inference because the likelihood function will be intractable for almost all partially observed stochastic processes. As a result, it is common to apply likelihood-free approaches that replace likelihood evaluations with realisations of the model and observation process. However, likelihood-free techniques are computationally expensive for accurate inference as they may require millions of high-fidelity, expensive stochastic simulations. To address this challenge, we develop a novel approach that combines the multilevel Monte Carlo telescoping summation, applied to a sequence of approximate Bayesian posterior targets, with a multifidelity rejection sampler that learns from low-fidelity, computationally inexpensive,
model approximations to minimise the number of high-fidelity, computationally expensive, simulations required for accurate inference. Using examples from systems biology, we demonstrate improvements of more than two orders of magnitude over standard rejection sampling techniques

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: