sum of Paretos
A rather curious question on X validated about the evolution of
when M increases. Actually, this expectation is asymptotically equivalent to
or again
where the average is made of Pareto (1,1), since one can invoke Slutsky many times. (And the above comparison of the integrated rv’s does not show a major difference.) Comparing several Monte Carlo sequences shows a lot of variability, though, which is not surprising given the lack of expectation of the Pareto (1,1) distribution. But over the time I spent on that puzzle last week end, I could not figure the limiting value, despite uncovering the asymptotic behaviour of the average.
May 12, 2022 at 5:32 pm
Et en appliquant
à
on devrait y voir plus clair?
May 13, 2022 at 11:56 am
Pas vraiment…
May 15, 2022 at 10:59 am
Si



alors
et
Consequence
May 15, 2022 at 12:53 pm
Correction A(t)=(1-e^{-t})/t evidemment. Si on remplace les lois uniformes de $U_i$ et $V_i$ par deux lois sur la demi doite quelconques la valeur doit etre encore jolie
May 15, 2022 at 2:21 pm
Les simulations ne semblent pas concorder avec cette valeur limite, puisqu’elles indiquent plutôt 1/8 ?!
May 12, 2022 at 8:10 am
[…] article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here) […]