optimal Gaussian zorbing

A zorbing puzzle from the Riddler: cover the plane with four non-intersecting disks of radius one towards getting the highest probability (under the standard bivariate Normal distribution).

As I could not see a simple connection between the disks and the standard Normal, beyond the probability of a disk being given by a non-central chi-square cdf (with two degrees of freedom), I (once again) tried a random search by simulated annealing, which ended up with a configuration like the above, never above 0.777 using a pedestrian R code like

for(t in 1:1e6){# move the disk centres
 #coverage probability
 #simulated annealing step
   if (sol$val<p) sol=list(val=pp,pos=rbind(A,B,C,D))}

I also tried a simpler configuration where all disk centres were equidistant from a reference centre, but this led to a lower “optimal” probability. I was looking forward the discussion of the puzzle, to discover if anything less brute-force was possible! But there was no deeper argument there beyond the elimination of other “natural” configurations (and missing the non-central χ² connection!). Among these options, having two disks tangent at (0,0) were optimal. But the illustration was much nicer:

One Response to “optimal Gaussian zorbing”

  1. […] article was first published on R – Xi'an's Og, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here) […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: