coupling for the Gibbs sampler

At BNP13, Brian Trippe presented the AISTAT 2022 paper he recently wrote with Tin D. Nguyen and Tamara Broderick. Which made me read their 2021 paper on the topic. There, they note that coupling may prove challenging, which they blame on label switching. Considering a naïve Gibbs sampler on the space of partitions, meaning allocating each data-point to one of the existing partitions or to a singleton, they construct an optimal transport coupling under Hamming distance. Which appears to be achievable in O(NK³log{K}), if K is the maximal number of partitions among both chains. The paper does not goes deeply into the implementation, which involves [to quote] (a) computing the distances between each pair of partitions in the Cartesian product of supports of the Gibbs conditionals and (b) solving the optimal transport problem. Except in the appendix where the book-keeping necessary to achieve O(K²) for pairwise distances and the remaining complexity follows from the standard Orlin’s algorithm. What remains unclear from the paper is that, while the chains couple faster (fastest?), the resulting estimators do not necessarily improve upon budget-equivalent alternatives. (The reason for the failure of the single chain in Figure 2 is hard to fathom.)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: