## latest math stats exam

**A**s I finished grading our undergrad math stats exam (in Paris Dauphine) over the weekend, which was very straightforward this year, the more because most questions had already been asked on weekly quizzes or during practicals, some answers stroke me as atypical (but ChatGPT is not to blame!). For instance, in question 1, (c) received a fair share of wrong eliminations as g not being necessarily bounded. Rather than being contradicted by (b) being false. (ChatGPT managed to solve that question, except for the L² convergence!)

Question 2 was much less successful than we expected, most failures due to a catastrophic change of parameterisation for computing the mgf that could have been ignored given this is a Bernoulli model, right?! Although the students wasted quite a while computing the Fisher information for the Binomial distribution in Question 3… (ChatGPT managed to solve that question!)

Question 4 was intentionally confusing and while most (of those who dealt with the R questions) spotted the opposition between sample and distribution, hence picking (f), a few fell into the trap (d).

Question 7 was also surprisingly incompletely covered by a significant fraction of the students, as they missed the *sufficiency* in (c). (ChatGPT did not manage to solve that question, starting with the inverted statement that “a minimal sufficient statistic is a sufficient statistic that is not a function of any other sufficient statistic”…)

And Question 8 was rarely complete, even though many recalled Basu’s theorem for (a) [more rarely (d)] and flunked (c). A large chunk of them argued that the ancilarity of statistics in (a) and (d) made them [distributionally] independent of μ, *therefore* [probabilistically] of the empirical mean! (Again flunked by ChatGPT, confusing completeness and sufficiency.)

*Related*

This entry was posted on January 28, 2023 at 12:23 am and is filed under Books, Kids, R, Statistics, University life with tags ancilarity, Basu's theorem, ChatGTP, exponential families, mathematical statistics, minimal sufficient statistic, moment generating function, R, speed of convergence, Université Paris Dauphine. You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

## Leave a Reply