Archive for the Mountains Category

over the Bernese Alps [jatp]

Posted in Mountains, pictures, Travel with tags , , , , , , , , , on November 4, 2017 by xi'an

Great views of the Bernese and Grisonese Alps on both legs of my trip to and from Venezia. Flying over Les Diablerets, Bormio and many other places I visited over the years..

fiducial inference

Posted in Books, Mountains, pictures, Running, Statistics, Travel with tags , , , , , , , , , , on October 30, 2017 by xi'an

In connection with my recent tale of the many ε’s, I received from Gunnar Taraldsen [from Tronheim, Norge] a paper [jointly written with Bo Lindqvist and just appeared on-line in JSPI] on conditional fiducial models.

“The role of the prior and the statistical model in Bayesian analysis is replaced by the use of the fiducial model x=R(θ,ε) in fiducial inference. The fiducial is obtained in this case without a prior distribution for the parameter.”

Reading this paper after addressing the X validated question made me understood better the fundamental wrongness of fiducial analysis! If I may herein object to Fisher himself… Indeed, when writing x=R(θ,ε), as the representation of the [observed] random variable x as a deterministic transform of a parameter θ and of an [unobserved] random factor ε, the two random variables x and ε are based on the same random preimage ω, i.e., x=x(ω) and ε=ε(ω). Observing x hence sets a massive constraint on the preimage ω and on the conditional distribution of ε=ε(ω). When the fiducial inference incorporates another level of randomness via an independent random variable ε’ and inverts x=R(θ,ε’) into θ=θ(x,ε’), assuming there is only one solution to the inversion, it modifies the nature of the underlying σ-algebra into something that is incompatible with the original model. Because of this sudden duplication of the random variates. While the inversion of this equation x=R(θ,ε’) gives an idea of the possible values of θ when ε varies according to its [prior] distribution, it does not account for the connection between x and ε. And does not turn the original parameter into a random variable with an implicit prior distribution.

As to conditional fiducial distributions, they are defined by inversion of x=R(θ,ε), under a certain constraint on θ, like C(θ)=0, which immediately raises a Pavlovian reaction in me, namely that since the curve C(θ)=0 has measure zero under the original fiducial distribution, how can this conditional solution be uniquely or at all defined. Or to avoid the Borel paradox mentioned in the paper. If I get the meaning of the authors in this section, the resulting fiducial distribution will actually depend on the choice of σ-algebra governing the projection.

“A further advantage of the fiducial approach in the case of a simple fiducial model is that independent samples are produced directly from independent sampling from [the fiducial distribution]. Bayesian simulations most often come as dependent samples from a Markov chain.”

This side argument in “favour” of the fiducial approach is most curious as it brings into the picture computational aspects that do not have any reason to be there. (The core of the paper is concerned with the unicity of the fiducial distribution in some univariate settings. Not with computational issues.)

art brut [jatp]

Posted in Mountains, pictures, Running, Travel with tags , , , , , , on October 28, 2017 by xi'an

Astrostatistics school

Posted in Mountains, pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , on October 17, 2017 by xi'an

What a wonderful week at the Astrostat [Indian] summer school in Autrans! The setting was superb, on the high Vercors plateau overlooking both Grenoble [north] and Valence [west], with the colours of the Fall at their brightest on the foliage of the forests rising on both sides of the valley and a perfect green on the fields at the centre, with sun all along, sharp mornings and warm afternoons worthy of a late Indian summer, too many running trails [turning into X country ski trails in the Winter] to contemplate for a single week [even with three hours of running over two days], many climbing sites on the numerous chalk cliffs all around [but a single afternoon for that, more later in another post!]. And of course a group of participants eager to learn about Bayesian methodology and computational algorithms, from diverse [astronomy, cosmology and more] backgrounds, trainings and countries. I was surprised at the dedication of the participants travelling all the way from Chile, Péru, and Hong Kong for the sole purpose of attending the school. David van Dyk gave the first part of the school on Bayesian concepts and MCMC methods, Roberto Trotta the second part on Bayesian model choice and hierarchical models, and myself a third part on, surprise, surprise!, approximate Bayesian computation. Plus practicals on R.

As it happens Roberto had to cancel his participation and I turned for a session into Christian Roberto, presenting his slides in the most objective possible fashion!, as a significant part covered nested sampling and Savage-Dickey ratios, not exactly my favourites for estimating constants. David joked that he was considering postponing his flight to see me talk about these, but I hope I refrained from engaging into controversy and criticisms… If anything because this was not of interest for the participants. Indeed when I started presenting ABC through what I thought was a pedestrian example, namely Rasmus Baath’s socks, I found that the main concern was not running an MCMC sampler or a substitute ABC algorithm but rather an healthy questioning of the construction of the informative prior in that artificial setting, which made me quite glad I had planned to cover this example rather than an advanced model [as, e.g., one of those covered in the packages abc, abctools, or abcrf]. Because it generated those questions about the prior [why a Negative Binomial? why these hyperparameters? &tc.] and showed how programming ABC turned into a difficult exercise even in this toy setting. And while I wanted to give my usual warning about ABC model choice and argue for random forests as a summary selection tool, I feel I should have focussed instead on another example, as this exercise brings out so clearly the conceptual difficulties with what is taught. Making me quite sorry I had to leave one day earlier. [As did missing an extra run!] Coming back by train through the sunny and grape-covered slopes of Burgundy hills was an extra reward [and no one in the train commented about the local cheese travelling in my bag!]

 

Autrans, Vercors [jatp]

Posted in Mountains, pictures, Running, Travel with tags , , , , , , , on October 16, 2017 by xi'an

Gorges de la Bourne [jatp]

Posted in Mountains, pictures, Running, Travel with tags , , , , , , , , on October 12, 2017 by xi'an

[Astrostat summer school] fogrise [jatp]

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , on October 11, 2017 by xi'an