**W**hen working last week with a student, we came across [the slides of a talk at ICERM by Brian van Koten about] a stratified MCMC method whose core idea is to solve a eigenvector equation z’=z’F associated with the masses of “partition” functions Ψ evaluated at the target. (The arXived paper is also available since 2017 but I did not check it in more details.)Although the “partition” functions need to overlap for the matrix not to be diagonal (actually the only case that does not work is when these functions are truly indicator functions). As in other forms of stratified sampling, the practical difficulty is in picking the functions Ψ so that the evaluation of the terms of the matrix F is not overly impacted by the Monte Carlo error. If spending too much time in estimating these terms, there is not a clear gain in switching to stratified sampling, which may be why it is not particularly developed in the MCMC literature….

As an interesting aside, the illustration in this talk comes from the Mexican stamp thickness data I also used in my earlier mixture papers, concerning the 1872 Hidalgo issue that was printed on different qualities of paper. This makes the number k of components somewhat uncertain, although k=3 is sometimes used as a default. Hence a parameter and simulation space of dimension 8, even though the method is used toward approximating the marginal posteriors on the weights λ¹ and λ².

### Like this:

Like Loading...