Archive for ABC model choice

day two at ISBA 22

Posted in Mountains, pictures, Running, Statistics, Travel with tags , , , , , , , , , , , , , , , , , , , on June 30, 2022 by xi'an

Still woke up early too early, which let me go for a long run in Mont Royal (which felt almost immediately familiar from earlier runs at MCM 2017!) at dawn and at a pleasant temperature (but missed the top bagel bakery on the way back!). Skipped the morning plenary lectures to complete recommendation letters and finishing a paper submission. But had a terrific lunch with a good friend I had not seen in Covid-times, at a local branch of Kinton Ramen which I already enjoyed in Vancouver as my Airbnb was located on top of it.

I chaired the afternoon Bayesian computations session with Onur Teymur presenting the general spirit of his Neurips 21 paper on black box probabilistic numerics. Mentioning that a new textbook on the topic by Phillip Henning, Michael Osborne, and Hans Kersting had appeared today! The second talk was by Laura Bondi who discussed an ABC model choice approach to assess breast cancer screening. With enough missing data (out of 78051 women followed over 12 years) to lead to an intractable likelihood. Starting with vanilla ABC using 32 summaries and moving to our random forest approach. Unsurprisingly concluding with different top models, but not characterising the identifiability provided by the choice of the summaries. The third talk was by Ryan Chan (fresh Warwick PhD recipient), about a Fusion divide-and-conquer approach that avoids the approximation of earlier approaches. In particular he uses a clever accept-reject algorithm to generate a product of densities using the component densities. A nice trick that Murray explained to me while visiting in Paris lg ast month. (The approach appears to be parameterisation dependent.) The final talk was by Umberto Picchini and in a sort the synthetic likelihood mirror of Massi’s talk yesterday, in the sense of constructing a guided proposal relying on observed summaries. If not comparing both approaches on a given toy like the g-and-k distribution.

ABC on brain networks

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , on April 16, 2021 by xi'an

Research Gate sent me an automated email pointing out a recent paper citing some of our ABC papers. The paper is written by Timothy West et al., neuroscientists in the UK, comparing models of Parkinsonian circuit dynamics. Using SMC-ABC. One novelty is the update of the tolerance by a fixed difference, unless the acceptance rate is too low, in which case the tolerance is reinitialised to a starting value.

“(…) the proposal density P(θ|D⁰) is formed from the accepted parameters sets. We use a density approximation to the marginals and a copula for the joint (…) [i.e.] a nonparametric estimation of the marginal densities overeach parameter [and] the t-copula(…) Data are transformed to the copula scale (unit-square) using the kernel density estimator of the cumulative distribution function of each parameter and then transformed to the joint space with the t-copula.”

The construct of the proposal is quite involved, as described in the above quote. The model choice approach is standard (à la Grelaud et al.) but uses the median distance as a tolerance.

“(…) test whether the ABC estimator will: a) yield parameter estimates that are unique to the data from which they have been optimized; and b) yield consistent estimation of parameters across multiple instances (…) test the face validity of the model comparison framework (…) [and] demonstrate the scalability of the optimization and model comparison framework.”

The paper runs a fairly extensive test of the above features, concluding that “the ABC optimized posteriors are consistent across multiple initializations and that the output is determined by differences in the underlying model generating the given data.” Concerning model comparison, the authors mix the ABC Bayes factor with a post-hoc analysis of divergence to discriminate against overfitting. And mention the potential impact of the summary statistics in the conclusion section, albeit briefly, and the remark that the statistics were “sufficient to recover known parameters” is not supporting their use for model comparison. The additional criticism of sampling strategies for approximating Bayes factors is somewhat irrelevant, the main issue with ABC model choice being a change of magnitude in the evidence.

“ABC has established itself as a key tool for parameter estimation in systems biology (…) but is yet to see wide adoption in systems neuroscience. It is known that ABC will not perform well under certain conditions (Sunnåker et al., 2013). Specifically, it has been shown that the
simplest form of ABC algorithm based upon an rejection-sampling approach is inefficient in the case where the prior densities lie far from the true posterior (…) This motivates the use of neurobiologically grounded models over phenomenological models where often the ranges of potential parameter values are unknown.”

locusts in a random forest

Posted in pictures, Statistics, University life with tags , , , , , , , , , , , on July 19, 2019 by xi'an

My friends from Montpellier, where I am visiting today, Arnaud Estoup, Jean-Michel Marin, and Louis Raynal, along with their co-authors, have recently posted on biorXiv a paper using ABC-RF (Random Forests) to analyse the divergence of two populations of desert locusts in Africa. (I actually first heard of their paper by an unsolicited email from one of these self-declared research aggregates.)

“…the present study is the first one using recently developed ABC-RF algorithms to carry out inferences about both scenario choice and parameter estimation, on a real multi-locus microsatellite dataset. It includes and illustrates three novelties in statistical analyses (…): model grouping analyses based on several key evolutionary events, assessment of the quality of predictions to evaluate the robustness of our inferences, and incorporation of previous information on the mutational setting of the used microsatellite markers”.

The construction of the competing models (or scenarios) is built upon data of past precipitations and desert evolution spanning several interglacial periods, back to the middle Pleistocene, concluding at a probable separation in the middle-late stages of the Holocene, which corresponds to the last transition from humid to arid conditions in the African continent. The probability of choosing the wrong model is exploited to determine which model(s) lead(s) to a posterior [ABC] probability lower than the corresponding prior probability, and only one scenario stands this test. As in previous ABC-RF implementations, the summary statistics are complemented by pure noise statistics in order to determine a barrier in the collection of statistics, even though those just above the noise elements (which often cluster together) may achieve better Gini importance by mere chance. An aspect of the paper that I particularly like is the discussion of the various prior modellings one can derive from existing information (or lack thereof) and the evaluation of the impact of these modellings on the resulting inference based on simulated pseudo-data.

over-confident about mis-specified models?

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , on April 30, 2019 by xi'an

Ziheng Yang and Tianqui Zhu published a paper in PNAS last year that criticises Bayesian posterior probabilities used in the comparison of models under misspecification as “overconfident”. The paper is written from a phylogeneticist point of view, rather than from a statistician’s perspective, as shown by the Editor in charge of the paper [although I thought that, after Steve Fienberg‘s intervention!, a statistician had to be involved in a submission relying on statistics!] a paper , but the analysis is rather problematic, at least seen through my own lenses… With no statistical novelty, apart from looking at the distribution of posterior probabilities in toy examples. The starting argument is that Bayesian model comparison is often reporting posterior probabilities in favour of a particular model that are close or even equal to 1.

“The Bayesian method is widely used to estimate species phylogenies using molecular sequence data. While it has long been noted to produce spuriously high posterior probabilities for trees or clades, the precise reasons for this over confidence are unknown. Here we characterize the behavior of Bayesian model selection when the compared models are misspecified and demonstrate that when the models are nearly equally wrong, the method exhibits unpleasant polarized behaviors,supporting one model with high confidence while rejecting others. This provides an explanation for the empirical observation of spuriously high posterior probabilities in molecular phylogenetics.”

The paper focus on the behaviour of posterior probabilities to strongly support a model against others when the sample size is large enough, “even when” all models are wrong, the argument being apparently that the correct output should be one of equal probability between models, or maybe a uniform distribution of these model probabilities over the probability simplex. Why should it be so?! The construction of the posterior probabilities is based on a meta-model that assumes the generating model to be part of a list of mutually exclusive models. It does not account for cases where “all models are wrong” or cases where “all models are right”. The reported probability is furthermore epistemic, in that it is relative to the measure defined by the prior modelling, not to a promise of a frequentist stabilisation in a ill-defined asymptotia. By which I mean that a 99.3% probability of model M¹ being “true”does not have a universal and objective meaning. (Moderation note: the high polarisation of posterior probabilities was instrumental in our investigation of model choice with ABC tools and in proposing instead error rates in ABC random forests.)

The notion that two models are equally wrong because they are both exactly at the same Kullback-Leibler distance from the generating process (when optimised over the parameter) is such a formal [or cartoonesque] notion that it does not make much sense. There is always one model that is slightly closer and eventually takes over. It is also bizarre that the argument does not account for the complexity of each model and the resulting (Occam’s razor) penalty. Even two models with a single parameter are not necessarily of intrinsic dimension one, as shown by DIC. And thus it is not a surprise if the posterior probability mostly favours one versus the other. In any case, an healthily sceptic approach to Bayesian model choice means looking at the behaviour of the procedure (Bayes factor, posterior probability, posterior predictive, mixture weight, &tc.) under various assumptions (model M¹, M², &tc.) to calibrate the numerical value, rather than taking it at face value. By which I do not mean a frequentist evaluation of this procedure. Actually, it is rather surprising that the authors of the PNAS paper do not jump on the case when the posterior probability of model M¹ say is uniformly distributed, since this would be a perfect setting when the posterior probability is a p-value. (This is also what happens to the bootstrapped version, see the last paragraph of the paper on p.1859, the year Darwin published his Origin of Species.)

a book and three chapters on ABC

Posted in Statistics with tags , , , , , , , , , , on January 9, 2019 by xi'an

In connection with our handbook on mixtures being published, here are three chapters I contributed to from the Handbook of ABC, edited by Scott Sisson, Yanan Fan, and Mark Beaumont:

6. Likelihood-free Model Choice, by J.-M. Marin, P. Pudlo, A. Estoup and C.P. Robert

12. Approximating the Likelihood in ABC, by  C. C. Drovandi, C. Grazian, K. Mengersen and C.P. Robert

17. Application of ABC to Infer about the Genetic History of Pygmy Hunter-Gatherers Populations from Western Central Africa, by A. Estoup, P. Verdu, J.-M. Marin, C. Robert, A. Dehne-Garcia, J.-M. Cornuet and P. Pudlo

%d bloggers like this: