Archive for ABC

automatic variational ABC

Posted in pictures, Statistics with tags , , , , , , , , , , on July 8, 2016 by xi'an

Amster11“Stochastic Variational inference is an appealing alternative to the inefficient sampling approaches commonly used in ABC.”

Moreno et al. [including Ted Meeds and Max Welling] recently arXived a paper merging variational inference and ABC. The argument for turning variational is computational speedup. The traditional (in variational inference) divergence decomposition of the log-marginal likelihood is replaced by an ABC version, parameterised in terms of intrinsic generators (i.e., generators that do not depend on cyber-parameters, like the U(0,1) or the N(0,1) generators). Or simulation code in the authors’ terms. Which leads to the automatic aspect of the approach. In the paper the derivation of the gradient is indeed automated.

“One issue is that even assuming that the ABC likelihood is an unbiased estimator of the true likelihood (which it is not), taking the log introduces a bias, so that we now have a biased estimate of the lower bound and thus biased gradients.”

I wonder how much of an issue this is, since we consider the variational lower bound. To be optimised in terms of the parameters of the variational posterior. Indeed, the endpoint of the analysis is to provide an optimal variational approximation, which remains an approximation whether or not the likelihood estimator is unbiased. A more “severe” limitation may be in the inversion constraint, since it seems to eliminate Beta or Gamma distributions. (Even though calling qbeta(runif(1),a,b) definitely is achievable… And not rejected by a Kolmogorov-Smirnov test.)

Incidentally, I discovered through the paper the existence of the Kumaraswamy distribution, which main appeal seems to be the ability to produce a closed-form quantile function, while bearing some resemblance with the Beta distribution. (Another arXival by Baltasar Trancón y Widemann studies some connections between those, but does not tell how to select the parameters to optimise the similarity.)

ISBA 2016 [#6]

Posted in Kids, Mountains, pictures, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , , , , on June 19, 2016 by xi'an

Fifth and final day of ISBA 2016, which was as full and intense as the previous ones. (Or even more if taking into account the late evening social activities pursued by most participants.) First thing in the morning, I managed to get very close to a hill top, thanks to the hints provided by Jeff Miller!, and with no further scratches from the nasty local thorn bushes. And I was back with plenty of time for a Bayesian robustness session with great talks. (Session organised by Judith Rousseau whom I crossed while running, rushing to the airport thanks to an Air France last-minute cancellation.) First talk by James Watson (on his paper with Chris Holmes on Kullback neighbourhoods on priors that Judith and I discussed recently in Statistical Science). Then as a contrapunto Peter Grünwald gave a neat geometric motivation for possible misbehaviour of Bayesian inference in non-convex misspecified environments and discussed his SafeBayes resolution that weights down the likelihood. In a sort of PAC-Bayesian way. And Erlis Ruli presented the ABC-R approach he developed with Laura Ventura and Nicola Sartori based on M-estimators and score functions. Making wonder [idly, as usual] whether cumulating different M-estimators would make a difference in the performances of the ABC algorithm.

David Dunson delivered one of the plenary lectures on high-dimensional discrete parameter estimation, including for instance categorical data. This wide-range talk covered many aspects and papers of David’s work, including a use of tensors I had neither seen nor heard of before before. With sparse modelling to resist the combinatoric explosion of contingency tables. However, and you may blame my Gallic pessimistic daemon for this remark, I have trouble to picture the meaning and relevance of a joint distribution on a space of hundreds and hundreds of dimension and similarly the ability to check the adequacy of any modelling in terms of goodness of fit. For instance, to borrow a non-military example from David’s talk, handling genetic data on ACGT sequences to infer its distribution sounds unreasonable unless most of the bases are mono-allelic. And the only way I see to test the realism of a model in this framework would be to engineer realisations of this distribution to observe the outcome, a test that seems neither feasible not desirable. Prediction based on such models may obviously operate satisfactorily without such realism requirements.

My first afternoon session (after the ISBA assembly that announced the location of ISBA 2020 in Yunnan, China!, home of Pu’ Ehr tea) was about accelerated MCMC schemes with talks by Sanvesh Srivastava on divide-and-conquer MCMC using Wasserstein barycentres, already discussed here, Minsuk Shin on a faster stochastic search variable selection which I could not understand, and Alex Beskos on the extension of Giles’ multilevel Monte Carlo to MCMC settings, which sounded worth investigating further even though I did not follow the notion all the way through. After listening to Luke Bornn explaining how to recalibrate grid data for climate science by accounting for correlation (with the fun title of `lost moments’), I rushed to my rental to [help] cook dinner for friends and… the ISBA 2016 conference was over!

ISBA 2016 [#4]

Posted in pictures, Running, Statistics, Travel with tags , , , , , , , , , , on June 17, 2016 by xi'an

As an organiser of the ABC session (along with Paul Fearnhead), I was already aware of most results behind the talks, but nonetheless got some new perspectives from the presentations. Ewan Cameron discussed a two-stage ABC where the first step is actually an indirect inference inference, which leads to a more efficient ABC step. With applications to epidemiology. Lu presented extensions of his work with Paul Fearnhead, incorporating regression correction à la Beaumont to demonstrate consistency and using defensive sampling to control importance sampling variance. (While we are working on a similar approach, I do not want to comment on the consistency part, but I missed how defensive sampling can operate in complex ABC settings, as it requires advanced knowledge on the target to be effective.) And Ted Meeds spoke about two directions for automatising ABC (as in the ABcruise), from incorporating the pseudo-random generator into the representation of the ABC target, to calling for deep learning advances. The inclusion of random generators in the transform is great, provided they can remain black boxes as otherwise they require recoding. (This differs from quasi-Monte Carlo ABC, which aims at reducing the variability due to sheer noise.) It took me a little while, but I eventually understood why Jan Haning saw this inclusion as a return to fiducial inference!

Merlise Clyde gave a wide-ranging plenary talk on (linear) model selection that looked at a large range of priors under the hat of generalised confluent hypergeometric priors over the mixing scale in Zellner’s g-prior. Some were consistent under one or both models, maybe even for misspecified models. Some parts paralleled my own talk on the foundations of Bayesian tests, no wonder since I mostly give a review before launching into a criticism of the Bayes factor. Since I think this may be a more productive perspective than trying to over-come the shortcomings of Bayes factors in weakly informative settings. Some comments at the end of Merlise’s talk were loosely connected to this view in that they called for an unitarian perspective [rather than adapting a prior to a specific inference problem] with decision-theoretic backup. Conveniently the next session was about priors and testing, obviously connected!, with Leo Knorr-Held considering g-priors for the Cox model, Kerrie Mengersen discussing priors for over-fitted mixtures and HMMs, and Dan Simpson entertaining us with his quest of a prior for a point process, eventually reaching PC priors.

ISBA 2016 [#3]

Posted in pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , , , , , , on June 16, 2016 by xi'an

Among the sessions I attended yesterday, I really liked the one on robustness and model mispecification. Especially the talk by Steve McEachern on Bayesian inference based on insufficient statistics, with a striking graph of the degradation of the Bayes factor as the prior variance increases. I sadly had no time to grab a picture of the graph, which compared this poor performance against a stable rendering when using a proper summary statistic. It clearly relates to our work on ABC model choice, as well as to my worries about the Bayes factor, so this explains why I am quite excited about this notion of restricted inference. In this session, Chris Holmes also summarised his two recent papers on loss-based inference, which I discussed here in a few posts, including the Statistical Science discussion Judith and I wrote recently. I also went to the j-ISBA [section] session which was sadly under-attended, maybe due to too many parallel sessions, maybe due to the lack of unifying statistical theme.

the new version of abcrf

Posted in pictures, R, Statistics, University life with tags , , , , , , on June 7, 2016 by xi'an

gaarden tree, Jan. 16, 2012A new version of the R package abcrf has been posted on Friday by Jean-Michel Marin, in conjunction with the recent arXival of our paper on point estimation via ABC and random forests. The new R functions come to supplement the existing ones towards implementing ABC point estimation:

  1. covRegAbcrf, which predicts the posterior covariance between those two response variables, given a new dataset of summaries.
  2. plot.regAbcrf, which provides a variable importance plot;
  3. predict.regabcrf, which predicts the posterior expectation, median, variance, quantiles for a given parameter and a new dataset;
  4. regAbcrf, which produces a regression random forest from a reference table aimed out predicting posterior expectation, variance and quantiles for a parameter;
  5. snp, a simulated example in population genetics used as reference table in our Bioinformatics paper.

Unfortunately, we could not produce directly a diyabc2abcrf function for translating a regular DIYABC output into a proper abcrf format, since the translation has to occur in DIYABC instead. And even this is not a straightforward move (to be corrected in the next version of DIYABC).

art brut

Posted in pictures, Travel with tags , , , , , on June 4, 2016 by xi'an

window on the Silja Symphony

ABC in Stockholm [on-board again]

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , on May 18, 2016 by xi'an

abcruiseAfter a smooth cruise from Helsinki to Stockholm, a glorious sunrise over the Ålend Islands, and a morning break for getting an hasty view of the city, ABC in Helsinki (a.k.a. ABCruise) resumed while still in Stockholm. The first talk was by Laurent Calvet about dynamic (state-space) models, when the likelihood is not available and replaced with a proximity between the observed and the simulated observables, at each discrete time in the series. The authors are using a proxy predictive for the incoming observable and derive an optimal—in a non-parametric sense—bandwidth based on this proxy. Michael Gutmann then gave a presentation that somewhat connected with his talk at ABC in Roma, and poster at NIPS 2014, about using Bayesian optimisation to reduce the rejections in ABC algorithms. Which means building a model of a discrepancy or distance by Bayesian optimisation. I definitely like this perspective as it reduces the simulation to one of a discrepancy (after a learning step). And does not require a threshold. Aki Vehtari expanded on this idea with a series of illustrations. A difficulty I have with the approach is the construction of the acquisition function… The last session while pretty late was definitely exciting with talks by Richard Wilkinson on surrogate or emulator models, which goes very much in a direction I support, namely that approximate models should be accepted on their own, by Julien Stoehr with clustering and machine learning tools to incorporate more summary statistics, and Tim Meeds who concluded with two (small) talks!, centred on the notion of deterministic algorithms that explicitly incorporate the random generators within the comparison, resulting in post-simulation recentering à la Beaumont et al. (2003), plus new advances with further incorporations of those random generators turned deterministic functions within variational Bayes inference

On Wednesday morning, we will land back in Helsinki and head back to our respective homes, after another exciting ABC in… workshop. I am terribly impressed by the way this workshop at sea operated, providing perfect opportunities for informal interactions and collaborations, without ever getting claustrophobic or dense. Enjoying very long days also helped. While it seems unlikely we can repeat this successful implementation, I hope we can aim at similar formats in the coming occurrences. Kitos paljon to our Finnish hosts!


Get every new post delivered to your Inbox.

Join 1,068 other followers