Archive for ABC

Bayesian composite likelihood

Posted in Books, Statistics, University life with tags , , , , , , on February 11, 2016 by xi'an

“…the pre-determined weights assigned to the different associations between observed and unobserved values represent strong a priori knowledge regarding the informativeness of clues. A poor choice of weights will inevitably result in a poor approximation to the “true” Bayesian posterior…”

Last Xmas, Alexis Roche arXived a paper on Bayesian inference via composite likelihood. I find the paper quite interesting in that [and only in that] it defends the innovative notion of writing a composite likelihood as a pool of opinions about some features of the data. Recall that each term in the composite likelihood is a marginal likelihood for some projection z=f(y) of the data y. As in ABC settings, although it is rare to derive closed-form expressions for those marginals. The composite likelihood is parameterised by powers of those components. Each component is associated with an expert, whose weight reflects the importance. The sum of the powers is constrained to be equal to one, even though I do not understand why the dimensions of the projections play no role in this constraint. Simplicity is advanced as an argument, which sounds rather weak… Even though this may be infeasible in any realistic problem, it would be more coherent to see the weights as producing the best Kullback approximation to the true posterior. Or to use a prior on the weights and estimate them along the parameter θ. The former could be incorporated into the later following the approach of Holmes & Walker (2013). While the ensuing discussion is most interesting, it remains missing in connecting the different components in terms of the (joint) information brought about the parameters. Especially because the weights are assumed to be given rather than inferred. Especially when they depend on θ. I also wonder why the variational Bayes interpretation is not exploited any further. And see no clear way to exploit this perspective in an ABC environment.

ABC for wargames

Posted in Books, Kids, pictures, Statistics with tags , , , , , , on February 10, 2016 by xi'an

I recently came across an ABC paper in PLoS ONE by Xavier Rubio-Campillo applying this simulation technique to the validation of some differential equation models linking force sizes and values for both sides. The dataset is made of battle casualties separated into four periods, from pike and musket to the American Civil War. The outcome is used to compute an ABC Bayes factor but it seems this computation is highly dependent on the tolerance threshold. With highly variable numerical values. The most favoured model includes some fatigue effect about the decreasing efficiency of armies along time. While the paper somehow reminded me of a most peculiar book, I have no idea on the depth of this analysis, namely on how relevant it is to model a battle through a two-dimensional system of differential equations, given the numerous factors involved in the matter…

Bayesian model comparison with intractable constants

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on February 8, 2016 by xi'an

abcIRichard Everitt, Adam Johansen (Warwick), Ellen Rowing and Melina Evdemon-Hogan have updated [on arXiv] a survey paper on the computation of Bayes factors in the presence of intractable normalising constants. Apparently destined for Statistics and Computing when considering the style. A great entry, in particular for those attending the CRiSM workshop Estimating Constants in a few months!

A question that came to me from reading the introduction to the paper is why a method like Møller et al.’s (2006) auxiliary variable trick should be considered more “exact” than the pseudo-marginal approach of Andrieu and Roberts (2009) since the later can equally be seen as an auxiliary variable approach. The answer was on the next page (!) as it is indeed a special case of Andrieu and Roberts (2009). Murray et al. (2006) also belongs to this group with a product-type importance sampling estimator, based on a sequence of tempered intermediaries… As noted by the authors, there is a whole spectrum of related methods in this area, some of which qualify as exact-approximate, inexact approximate and noisy versions.

Their main argument is to support importance sampling as the method of choice, including sequential Monte Carlo (SMC) for large dimensional parameters. The auxiliary variable of Møller et al.’s (2006) is then part of the importance scheme. In the first toy example, a Poisson is opposed to a Geometric distribution, as in our ABC model choice papers, for which a multiple auxiliary variable approach dominates both ABC and Simon Wood’s synthetic likelihood for a given computing cost. I did not spot which artificial choice was made for the Z(θ)’s in both models, since the constants are entirely known in those densities. A very interesting section of the paper is when envisioning biased approximations to the intractable density. If only because the importance weights are most often biased due to the renormalisation (possibly by resampling). And because the variance derivations are then intractable as well. However, due to this intractability, the paper can only approach the impact of those approximations via empirical experiments. This leads however to the interrogation on how to evaluate the validity of the approximation in settings where truth and even its magnitude are unknown… Cross-validation and bootstrap type evaluations may prove too costly in realistic problems. Using biased solutions thus mostly remains an open problem in my opinion.

The SMC part in the paper is equally interesting if only because it focuses on the data thinning idea studied by Chopin (2002) and many other papers in the recent years. This made me wonder why an alternative relying on a sequence of approximations to the target with tractable normalising constants could not be considered. A whole sequence of auxiliary variable completions sounds highly demanding in terms of computing budget and also requires a corresponding sequence of calibrations. (Now, ABC fares no better since it requires heavy simulations and repeated calibrations, while further exhibiting a damning missing link with the target density. ) Unfortunately, embarking upon a theoretical exploration of the properties of approximate SMC is quite difficult, as shown by the strong assumptions made in the paper to bound the total variation distance to the true target.

Goodness-of-fit statistics for ABC

Posted in Books, Statistics, University life with tags , , , , , on February 1, 2016 by xi'an

“Posterior predictive checks are well-suited to Approximate Bayesian Computation”

Louisiane Lemaire and her coauthors from Grenoble have just arXived a new paper on designing a goodness-of-fit statistic from ABC outputs. The statistic is constructed from a comparison between the observed (summary) statistics and replicated summary statistics generated from the posterior predictive distribution. This is a major difference with the standard ABC distance, when the replicated summary statistics are generated from the prior predictive distribution. The core of the paper is about calibrating a posterior predictive p-value derived from this distance, since it is not properly calibrated in the frequentist sense that it is not uniformly distributed “under the null”. A point I discussed in an ‘Og entry about Andrews’ book a few years ago.

The paper opposes the average distance between ABC acceptable summary statistics and the observed realisation to the average distance between ABC posterior predictive simulations of summary statistics and the observed realisation. In the simplest case (e.g., without a post-processing of the summary statistics), the main difference between both average distances is that the summary statistics are used twice in the first version: first to select the acceptable values of the parameters and a second time for the average distance. Which makes it biased downwards. The second version is more computationally demanding, especially when deriving the associated p-value. It however produces a higher power under the alternative. Obviously depending on how the alternative is defined, since goodness-of-fit is only related to the null, i.e., to a specific model.

From a general perspective, I do not completely agree with the conclusions of the paper in that (a) this is a frequentist assessment and partakes in the shortcomings of p-values and (b) the choice of summary statistics has a huge impact on the decision about the fit since hardly varying statistics are more likely to lead to a good fit than appropriately varying ones.

exact ABC

Posted in Books, pictures, Statistics, University life with tags , , , , , on January 21, 2016 by xi'an

Sydney Opera from Sydney Harbour Bridge, Sydney, July 14, 2012Minh-Ngoc Tran and Robert Kohn have devised an “exact” ABC algorithm. They claim therein to remove the error due to the non-zero tolerance by using an unbiased estimator of the likelihood. Most interestingly, they start from the debiasing technique of Rhee and Glynn [also at the basis of the Russian roulette]. Which sums up as using a telescoping formula on a sequence of converging biased estimates. And cutting the infinite sum with a stopping rule.

“Our article proposes an ABC algorithm to estimate [the observed likelihood] that completely removes the error due to [the ABC] approximation…”

The sequence of biased but converging approximations is associated with a sequence of decreasing tolerances. The corresponding sequence of weights that determines the truncation in the series is connected to the decrease in the bias in an implicit manner for all realistic settings. Although Theorem 1 produces conditions on the ABC kernel and the sequence of tolerances and pseudo-sample sizes that guarantee unbiasedness and finite variance of the likelihood estimate. For a geometric stopping rule with rejection probability p, both tolerance and pseudo-sample size decrease as a power of p. As a side product the method also returns an unbiased estimate of the evidence. The overall difficulty I have with the approach is the dependence on the stopping rule and its calibration, and the resulting impact on the computing time of the likelihood estimate. When this estimate is used in a pseudo-marginal scheme à la Andrieu and Roberts (2009), I fear this requires new pseudo-samples at each iteration of the Metropolis-Hastings algorithm, which then becomes prohibitively expensive. Later today, Mark Girolami pointed out to me that Anne-Marie Lyne [one of the authors of the Russian roulette paper] also considered this exact approach in her thesis and concluded at an infinite computing time.

weak convergence (…) in ABC

Posted in Books, Statistics, University life with tags , , , , , , on January 18, 2016 by xi'an

Samuel Soubeyrand and Eric Haon-Lasportes recently published a paper in Statistics and Probability Letters that has some common features with the ABC consistency paper we wrote a few months ago with David Frazier and Gael Martin. And to the recent Li and Fearnhead paper on the asymptotic normality of the ABC distribution. Their approach is however based on a Bernstein-von Mises [CLT] theorem for the MLE or a pseudo-MLE. They assume that the density of this estimator is asymptotically equivalent to a Normal density, in which case the true posterior conditional on the estimator is also asymptotically equivalent to a Normal density centred at the (p)MLE. Which also makes the ABC distribution normal when both the sample size grows to infinity and the tolerance decreases to zero. Which is not completely unexpected. However, in complex settings, establishing the asymptotic normality of the (p)MLE may prove a formidable or even impossible task.

MCMskv #4 [house with a vision]

Posted in Statistics with tags , , , , , , , , , , , , on January 9, 2016 by xi'an

OLYMPUS DIGITAL CAMERALast day at MCMskv! Not yet exhausted by this exciting conference, but this was the toughest day with one more session and a tutorial by Art Own on quasi Monte-Carlo. (Not even mentioning the night activities that I skipped. Or the ski break that I did not even consider.) Krys Latunszynski started with a plenary on exact methods for discretised diffusions, with a foray in Bernoulli factory problems. Then a neat session on adaptive MCMC methods that contained a talk by Chris Sherlock on delayed acceptance, where the approximation to the target was built by knn trees. (The adaptation was through the construction of the tree by including additional evaluations of the target density. Another paper sitting in my to-read list for too a long while: the exploitation of the observed values of π towards improving an MCMC sampler has always be “obvious” to me even though I could not see any practical way of doing so. )

It was wonderful that Art Owen accepted to deliver a tutorial at MCMskv on quasi-random Monte Carlo. Great tutorial, with a neat coverage of the issues most related to Monte Carlo integration. Since quasi-random sequences have trouble with accept/reject methods, a not-even-half-baked idea that came to me during Art’s tutorial was that the increased computing power granted by qMC could lead to a generic integration of the Metropolis-Hastings step in a Rao-Blackwellised manner. Art mentioned he was hoping that in a near future one could switch between pseudo- and quasi-random in an almost automated manner when running standard platforms like R. This would indeed be great, especially since quasi-random sequences seem to be available at the same cost as their pseudo-random counterpart. During the following qMC session, Art discussed the construction of optimal sequences on sets other than hypercubes (with the surprising feature that projecting optimal sequences from the hypercube does not work). Mathieu Gerber presented the quasi-random simulated annealing algorithm he developed with Luke Bornn that I briefly discussed a while ago. Or thought I did as I cannot trace a post on that paper! While the fact that annealing also works with quasi-random sequences is not astounding, the gain over random sequences shown on two examples is clear. The session also had a talk by Lester Mckey who relies Stein’s discrepancy to measure the value of an approximation to the true target. This was quite novel, with a surprising connection to Chris Oates’ talk and the use of score-based control variates, if used in a dual approach.

Another great session was the noisy MCMC one organised by Paul Jenkins (Warwick), with again a coherent presentation of views on the quality or lack thereof of noisy (or inexact) versions, with an update from Richard Everitt on inexact MCMC, Felipe Medina Aguayo (Warwick) on sufficient conditions for noisy versions to converge (and counterexamples), Jere Koskela (Warwick) on a pseudo-likelihood approach to the highly complex Kingman’s coalescent model in population genetics (of ABC fame!), and Rémi Bardenet on the tall data approximations techniques discussed in a recent post. Having seen or read most of those results previously did not diminish the appeal of the session.


Get every new post delivered to your Inbox.

Join 981 other followers