Archive for ABC

ABC for repulsive point processes

Posted in Books, pictures, Statistics, University life with tags , , , , , , , on May 5, 2016 by xi'an

garden tree, Jan. 12, 2012Shinichiro Shirota and Alan Gelfand arXived a paper on the use of ABC for analysing some repulsive point processes, more exactly the Gibbs point processes, for which ABC requires a perfect sampler to operate, unless one is okay with stopping an MCMC chain before it converges, and determinantal point processes studied by Lavancier et al. (2015) [a paper I wanted to review and could not find time to!]. Detrimental point processes have an intensity function that is the determinant of a covariance kernel, hence repulsive. Simulation of a determinantal process itself is not straightforward and involves approximations. But the likelihood itself is unavailable and Lavancier et al. (2015) use approximate versions by fast Fourier transforms, which means MCMC is challenging even with those approximate steps.

“The main computational cost of our algorithm is simulation of x for each iteration of the ABC-MCMC.”

The authors propose here to use ABC instead. With an extra approximative step for simulating the determinantal process itself. Interestingly, the Gibbs point process allows for a sufficient statistic, the number of R-closed points, although I fail to see how the radius R is determined by the model, while the determinantal process does not. The summary statistics end up being a collection of frequencies within various spheres of different radii. However, these statistics are then processed by Fearnhead’s and Prangle’s proposal, namely to come up as an approximation of E[θ|y] as the natural summary. Obtained by regression over the original summaries. Another layer of complexity stems from using an ABC-MCMC approach. And including a Lasso step in the regression towards excluding less relevant radii. The paper also considers Bayesian model validation for such point processes, implementing prior predictive tests with a ranked probability score, rather than a Bayes factor.

As point processes have always been somewhat mysterious to me, I do not have any intuition about the strength of the distributional assumptions there and the relevance of picking a determinantal process against, say, a Strauss process. The model comparisons operated in the paper are not strongly supporting one repulsive model versus the others, with the authors concluding at the need for many points towards a discrimination between models. I also wonder at the possibility of including other summaries than Ripley’s K-functions, which somewhat imply a discretisation of the space, by concentric rings. Maybe using other point processes for deriving summary statistics as MLEs or Bayes estimators for those models would help. (Or maybe not.)

auxiliary likelihood-based approximate Bayesian computation in state-space models

Posted in Books, pictures, Statistics, University life with tags , , , , , , , on May 2, 2016 by xi'an

With Gael Martin, Brendan McCabe, David T. Frazier, and Worapree Maneesoonthorn, we arXived (and submitted) a strongly revised version of our earlier paper. We begin by demonstrating that reduction to a set of sufficient statistics of reduced dimension relative to the sample size is infeasible for most state-space models, hence calling for the use of partial posteriors in such settings. Then we give conditions [like parameter identification] under which ABC methods are Bayesian consistent, when using an auxiliary model to produce summaries, either as MLEs or [more efficiently] scores. Indeed, for the order of accuracy required by the ABC perspective, scores are equivalent to MLEs but are computed much faster than MLEs. Those conditions happen to to be weaker than those found in the recent papers of Li and Fearnhead (2016) and Creel et al.  (2015).  In particular as we make no assumption about the limiting distributions of the summary statistics. We also tackle the dimensionality curse that plagues ABC techniques by numerically exhibiting the improved accuracy brought by looking at marginal rather than joint modes. That is, by matching individual parameters via the corresponding scalar score of the integrated auxiliary likelihood rather than matching on the multi-dimensional score statistics. The approach is illustrated on realistically complex models, namely a (latent) Ornstein-Ulenbeck process with a discrete time linear Gaussian approximation is adopted and a Kalman filter auxiliary likelihood. And a square root volatility process with an auxiliary likelihood associated with a Euler discretisation and the augmented unscented Kalman filter.  In our experiments, we compared our auxiliary based  technique to the two-step approach of Fearnhead and Prangle (in the Read Paper of 2012), exhibiting improvement for the examples analysed therein. Somewhat predictably, an important challenge in this approach that is common with the related techniques of indirect inference and efficient methods of moments, is the choice of a computationally efficient and accurate auxiliary model. But most of the current ABC literature discusses the role and choice of the summary statistics, which amounts to the same challenge, while missing the regularity provided by score functions of our auxiliary models.

ABC in Helsinki & Stockholm [deadline looming]

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on April 1, 2016 by xi'an

abcruiseIn case you have not yet registered for ABC in Helsinki (a.k.a. ABCruise), registration is open for just another week, with the all-inclusive fees of 200 euros for trip, cabin, talks, and meals! When registering you need to buy first a ticket on the Aalto University web shop: at some point, distinguishing between “Maksa” which means pay, and “Peruuta” which means cancel, may help! The submission of ABC posters is also encouraged till May 1, with emails to be sent to abcinhelsinki on gmail.

Sampling latent states for high-dimensional non-linear state space models with the embedded HMM method

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , on March 17, 2016 by xi'an

IMG_19390Previously, I posted a comment on a paper by Alex Shestopaloff and Radford Neal, after my visit to Toronto two years ago, using a particular version of ensemble Monte Carlo. A new paper by the same authors was recently arXived, as an refinement of the embedded HMM paper of Neal (2003), in that the authors propose a new and more efficient way to generate from the (artificial) embedded hidden Markov sampler that is central to their technique of propagating a set of pool states. The method exploits both forward and backward representations of HMMs in an alternating manner. And propagates the pool states from one observation time to the next. The paper also exploits latent Gaussian structures to make autoregressive proposals, as well as flip proposals from x to -x [which seem to only make sense when 0 is a central value for the target, i.e. when the observables y only depend on |x|]. All those modifications bring the proposal quite close to (backward) particle Gibbs, the difference being in using Metropolis rather than importance steps. And in an improvement brought by the embedded HMM approach, even though it is always delicate to generalise those comparisons when some amount of calibration is required by both algorithms under comparison. (Especially delicate when it is rather remote from my area of expertise!) Anyway, I am still intrigued [in a positive way] by the embedded HMM idea as it remains mysterious that a finite length HMM simulation can improve the convergence performances that much. And wonder at a potential connection with an earlier paper of Anthony Lee and Krys Latuszynski using a random number of auxiliary variables. Presumably a wrong impression from a superficial memory…

at CIRM [#3]

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , on March 4, 2016 by xi'an

Simon Barthelmé gave his mini-course on EP, with loads of details on the implementation of the method. Focussing on the EP-ABC and MCMC-EP versions today. Leaving open the difficulty of assessing to which limit EP is converging. But mentioning the potential for asynchronous EP (on which I would like to hear more). Ironically using several times a logistic regression example, if not on the Pima Indians benchmark! He also talked about approximate EP solutions that relate to consensus MCMC. With a connection to Mark Beaumont’s talk at NIPS [at the time as mine!] on the comparison with ABC. While we saw several talks on EP during this week, I am still agnostic about the potential of the approach. It certainly produces a fast proxy to the true posterior and hence can be exploited ad nauseam in inference methods based on pseudo-models like indirect inference. In conjunction with other quick and dirty approximations when available. As in ABC, it would be most useful to know how far from the (ideal) posterior distribution does the approximation stands. Machine learning approaches presumably allow for an evaluation of the predictive performances, but less so for the modelling accuracy, even with new sampling steps. [But I know nothing, I know!]

Dennis Prangle presented some on-going research on high dimension [data] ABC. Raising the question of what is the true meaning of dimension in ABC algorithms. Or of sample size. Because the inference relies on the event d(s(y),s(y’))≤ξ or on the likelihood l(θ|x). Both one-dimensional. Mentioning Iain Murray’s talk at NIPS [that I also missed]. Re-expressing as well the perspective that ABC can be seen as a missing or estimated normalising constant problem as in Bornn et al. (2015) I discussed earlier. The central idea is to use SMC to simulate a particle cloud evolving as the target tolerance ξ decreases. Which supposes a latent variable structure lurking in the background.

Judith Rousseau gave her talk on non-parametric mixtures and the possibility to learn parametrically about the component weights. Starting with a rather “magic” result by Allman et al. (2009) that three repeated observations per individual, all terms in a mixture are identifiable. Maybe related to that simpler fact that mixtures of Bernoullis are not identifiable while mixtures of Binomial are identifiable, even when n=2. As “shown” in this plot made for X validated. Actually truly related because Allman et al. (2009) prove identifiability through a finite dimensional model. (I am surprised I missed this most interesting paper!) With the side condition that a mixture of p components made of r Bernoulli products is identifiable when p ≥ 2[log² r] +1, when log² is base 2-logarithm. And [x] the upper rounding. I also find most relevant this distinction between the weights and the remainder of the mixture as weights behave quite differently, hardly parameters in a sense.

Bayesian week in a statistics month at CIRM

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , on February 28, 2016 by xi'an

Calanque de Morgiou, Marseille, July 7, 2010As posted earlier, this week is a Bayesian week at CIRM, the French mathematical society centre near Marseilles. Where we meet with about 80 researchers and students interested in Bayesian statistics, from all possible sides. (And possibly in climbing in the Calanques and trail running, if not swimming at this time of year…) With Jean-Michel we will be teaching a short course on Bayesian computational methods, namely ABC and MCMC, over the first two days… Here are my slides for the MCMC side:

As should be obvious from the first slides, this is a very introductory course that should only appeal to students with no previous exposure. The remainder of the week will see advanced talks on the state-of-the-art Bayesian computational methods, including some on noisy MCMC and on the mysterious expectation-propagation technique.

patterns of scalable Bayesian inference

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , on February 24, 2016 by xi'an

Elaine Angelino, Matthew Johnson and Ryan Adams just arXived a massive survey of 118 pages on scalable Bayesian inference, which could have been entitled Bayes for Big Data, as this monograph covers state-of-the-art computational approaches to large and complex data structures. I did not read each and every line of it, but I have already recommended it to my PhD students. Some of its material unsurprisingly draws from the recent survey by Rémi Bardenet et al. (2015) I discussed a while ago. It also relates rather frequently to the somewhat parallel ICML paper of Korattikara et al. (2014). And to the firefly Monte Carlo procedure also discussed previously here.

Chapter 2 provides some standard background on computational techniques, Chapter 3 covers MCMC with data subsets, Chapter 4 gives some entries on MCMC with parallel and distributed architectures, Chapter 5 focus on variational solutions, and Chapter 6 is about open questions and challenges.

“Insisting on zero asymptotic bias from Monte Carlo estimates of expectations may leave us swamped in errors from high variance or transient bias.”

One central theme of the paper is the need for approximate solutions, MCMC being perceived as the exact solution. (Somewhat wrongly in the sense that the product of an MCMC is at best an empirical version of the true posterior, hence endowed with a residual and incompressible variation for a given computing budget.) While Chapter 3 stresses the issue of assessing the distance to the true posterior, it does not dwell at all on computing times and budget, which is arguably a much harder problem. Chapter 4 seems to be more aware of this issue since arguing that “a way to use parallel computing resources is to run multiple sequential MCMC algorithms at once [but that this] does not reduce the transient bias in MCMC estimates of posterior expectations” (p.54). The alternatives are to use either prefetching (which was the central theme of Elaine Angelino’s thesis), asynchronous Gibbs with the new to me (?) Hogwild Gibbs algorithms (connected in Terenin et al.’s recent paper, not quoted in the paper), some versions of consensus Monte Carlo covered in earlier posts, the missing links being in my humble opinion an assessment of the worth of those solutions (in the spirit of “here’s the solution, what was the problem again?”) and once again the computing time issue. Chapter 5 briefly discusses some recent developments in variational mean field approximations, which is farther from my interests and (limited) competence, but which appears as a particular class of approximate models and thus could (and should?) relate to likelihood-free methods. Chapter 6 about the current challenges of the field is presumably the most interesting in this monograph in that it produces open questions and suggests directions for future research. For instance, opposing the long term MCMC error with the short term transient part. Or the issue of comparing different implementations in a practical and timely perspective.

Follow

Get every new post delivered to your Inbox.

Join 1,021 other followers