Archive for ABC

1500 nuances of gan [gan gan style]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on February 16, 2018 by xi'an

I recently realised that there is a currently very popular trend in machine learning called GAN [for generative adversarial networks] that strongly connects with ABC, at least in that it relies mostly on the availability of a generative model, i.e., a probability model that can be generated as in x=G(ϵ;θ), to draw inference about θ [or predictions]. For instance, there was a GANs tutorial at NIPS 2016 by Ian Goodfellow and many talks on the topic at recent NIPS, the 1500 in the title referring to the citations of the GAN paper by Goodfellow et al. (2014). (The name adversarial comes from opposing true model to generative model in the inference. )

If you remember Jeffreys‘s famous pique about classical tests as being based on improbable events that did not happen, GAN, like ABC,  is sort of the opposite in that it generates events until the one that was observed happens. More precisely, by generating pseudo-samples and switching parameters θ until these samples get as confused as possible between the data generating (“true”) distribution and the generative one. (In its original incarnation, GAN is indeed an optimisation scheme in θ.) A basic presentation of GAN is that it constructs a function D(x,ϕ) that represents the probability that x came from the true model p versus the generative model, ϕ being the parameter of a neural network trained to this effect, aimed at minimising in ϕ a two-term objective function

E[log D(x,ϕ)]+E[log(1D(G(ϵ;θ),ϕ))]

where the first expectation is taken under the true model and the second one under the generative model.

“The discriminator tries to best distinguish samples away from the generator. The generator tries to produce samples that are indistinguishable by the discriminator.” Edward

One ABC perception of this technique is that the confusion rate


is a form of distance between the data and the generative model. Which expectation can be approximated by repeated simulations from this generative model. Which suggests an extension from the optimisation approach to a ABCyesian version by selecting the smallest distances across a range of θ‘s simulated from the prior.

This notion relates to solution using classification tools as density ratio estimation, connecting for instance to Gutmann and Hyvärinen (2012). And ultimately with Geyer’s 1992 normalising constant estimator.

Another link between ABC and networks also came out during that trip. Proposed by Bishop (1994), mixture density networks (MDN) are mixture representations of the posterior [with component parameters functions of the data] trained on the prior predictive through a neural network. These MDNs can be trained on the ABC learning table [based on a specific if redundant choice of summary statistics] and used as substitutes to the posterior distribution, which brings an interesting alternative to Simon Wood’s synthetic likelihood. In a paper I missed Papamakarios and Murray suggest replacing regular ABC with this version…

El asiedo [book review]

Posted in Books, pictures, Travel, Wines with tags , , , , , , , , , on January 13, 2018 by xi'an

Just finished this long book by Arturo Pérez-Reverte that I bought [in its French translation] after reading the fascinating Dos de Mayo about the rebellion of the people of Madrid against the Napoleonian occupants. This book, The Siege, is just fantastic, more literary than Dos de Mayo and a mix of different genres, from the military to the historical, to the criminal, to the chess, to the speculative, to the romantic novel..! There are a few major characters, a police investigator, a trading company head, a corsair, a French canon engineer, a guerilla, with a well-defined unique location, the city of Cádiz under [land] siege by the French troops, but with access to the sea thanks to the British Navy. The serial killer part is certainly not the best item in the plot [as often with serial killer stories!], as it slowly drifts to the supernatural, borrowing from Laplace and Condorcet to lead to perfect predictions of where and when French bombs will fall. The historical part also appears to be rather biased against the British forces, if this opinion page is to be believed, towards a nationalist narrative making the Spanish guerilla resistance bigger and stronger than it actually was. But I still read the story with fascination and it kept me awake past my usual bedtime for several nights as I could not let the story go!

ABC forecasts

Posted in Books, pictures, Statistics with tags , , , , , , , , on January 9, 2018 by xi'an

My friends and co-authors David Frazier, Gael Martin, Brendan McCabe, and Worapree Maneesoonthorn arXived a paper on ABC forecasting at the turn of the year. ABC prediction is a natural extension of ABC inference in that, provided the full conditional of a future observation given past data and parameters is available but the posterior is not, ABC simulations of the parameters induce an approximation of the predictive. The paper thus considers the impact of this extension on the precision of the predictions. And argues that it is possible that this approximation is preferable to running MCMC in some settings. A first interesting result is that using ABC and hence conditioning on an insufficient summary statistic has no asymptotic impact on the resulting prediction, provided Bayesian concentration of the corresponding posterior takes place as in our convergence paper under revision.

“…conditioning inference about θ on η(y) rather than y makes no difference to the probabilistic statements made about [future observations]”

The above result holds both in terms of convergence in total variation and for proper scoring rules. Even though there is always a loss in accuracy in using ABC. Now, one may think this is a direct consequence of our (and others) earlier convergence results, but numerical experiments on standard time series show the distinct feature that, while the [MCMC] posterior and ABC posterior distributions on the parameters clearly differ, the predictives are more or less identical! With a potential speed gain in using ABC, although comparing parallel ABC versus non-parallel MCMC is rather delicate. For instance, a preliminary parallel ABC could be run as a burnin’ step for parallel MCMC, since all chains would then be roughly in the stationary regime. Another interesting outcome of these experiments is a case when the summary statistics produces a non-consistent ABC posterior, but still leads to a very similar predictive, as shown on this graph.This unexpected accuracy in prediction may further be exploited in state space models, towards producing particle algorithms that are greatly accelerated. Of course, an easy objection to this acceleration is that the impact of the approximation is unknown and un-assessed. However, such an acceleration leaves room for multiple implementations, possibly with different sets of summaries, to check for consistency over replicates.

Au’Bayes 17

Posted in Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on December 14, 2017 by xi'an

Some notes scribbled during the O’Bayes 17 conference in Austin, not reflecting on the highly diverse range of talks. And many new faces and topics, meaning O’Bayes is alive and evolving. With all possible objectivity, a fantastic conference! (Not even mentioning the bars where Peter Müller hosted the poster sessions, a feat I would have loved to see duplicated for the posters of ISBA 2018… Or the Ethiopian restaurant just around the corner with the right amount of fierce spices!)

The wiki on objective, reference, vague, neutral [or whichever label one favours] priors that was suggested at the previous O’Bayes meeting in Valencià, was introduced as Wikiprevia by Gonzalo Garcia-Donato. It aims at classifying recommended priors in most of the classical models, along with discussion panels, and it should soon get an official launch, when contributors will be welcome to include articles in a wiki principle. I wish the best to this venture which, I hope, will induce O’Bayesians to contribute actively.

In a brilliant talk that quickly reverted my jetlag doziness, Peter Grünwald returned to the topic he presented last year in Sardinia, namely safe Bayes or powered-down likelihoods to handle some degree of misspecification, with a further twist of introducing an impossible value `o’ that captures missing mass (to be called Peter’s demon?!), which absolute necessity I did not perceive. Food for thoughts, definitely. (But I feel that the only safe Bayes is the dead Bayes, as protecting against all kinds of mispecifications means no action is possible.)

I also appreciated Cristiano Villa’s approach to constructing prior weights in model comparison from a principled and decision-theoretic perspective even though I felt that the notion of ranking parameter importance required too much input to be practically feasible. (Unless I missed that point.)

Laura Ventura gave her talk on using for ABC various scores or estimating equations as summary statistics, rather than the corresponding M-estimators, which offers the appealing feature of reducing computation while being asymptotically equivalent. (A feature we also exploited for the regular score function in our ABC paper with Gael, David, Brendan, and Wonapree.) She mentioned the Hyvärinen score [of which I first heard in Padova!] as a way to bypass issues related to doubly intractable likelihoods. Which is a most interesting proposal that bypasses (ABC) simulations from such complex targets by exploiting a pseudo-posterior.

Veronika Rockova presented a recent work on concentration rates for regression tree methods that produce a rigorous analysis of these methods. Showing that the spike & slab priors plus BART [equals spike & tree] achieve sparsity and optimal concentration. In an oracle sense. With a side entry on assembling partition trees towards creating a new form of BART. Which made me wonder whether or not this was also applicable to random forests. Although they are not exactly Bayes. Demanding work in terms of the theory behind but with impressive consequences!

Just before I left O’Bayes 17 for Houston airport, Nick Polson, along with Peter McCullach, proposed an intriguing notion of sparse Bayes factors, which corresponds to the limit of a Bayes factor when the prior probability υ of the null goes to zero. When the limiting prior is replaced with an exceedance measure that can be normalised into a distribution, but does it make the limit a special prior? Linking  υ with the prior under the null is not an issue (this was the basis of my 1992 Lindley paradox paper) but the sequence of priors indexed by υ need be chosen. And reading from the paper at Houston airport, I could not spot a construction principle that would lead to a reference prior of sorts. One thing that Nick mentioned during his talk was that we observed directly realisations of the data marginal, but this is generally not the case as the observations are associated with a given value of the parameter, not one for each observation.The next edition of the O’Bayes conference will be in… Warwick on June 29-July 2, as I volunteered to organise this edition (16 years after O’Bayes 03 in Aussois!) just after the BNP meeting in Oxford on June 23-28, hopefully creating the environment for fruitful interactions between both communities! (And jumping from Au’Bayes to Wa’Bayes.)

Bayesian synthetic likelihood

Posted in Statistics with tags , , , , , , , on December 13, 2017 by xi'an

Leah Price, Chris Drovandi, Anthony Lee and David Nott published earlier this year a paper in JCGS on Bayesian synthetic likelihood, using Simon Wood’s synthetic likelihood as a substitute to the exact likelihood within a Bayesian approach. While not investigating the theoretical properties of this approximate approach, the paper compares it with ABC on some examples. In particular with respect to the number n of Monte Carlo replications used to approximate the mean and variance of the Gaussian synthetic likelihood.

Since this approach is most naturally associated with an MCMC implementation, it requires new simulations of the summary statistics at each iteration, without a clear possibility to involve parallel runs, in contrast to ABC. However in the final example of the paper, the authors reach values of n of several thousands, making use of multiple cores relevant, if requiring synchronicity and checks at every MCMC iteration.

The authors mention that “ABC can be viewed as a pseudo-marginal method”, but this has a limited appeal since the pseudo-marginal is a Monte Carlo substitute for the ABC target, not the original target. Similarly, there exists an unbiased estimator of the Gaussian density due to Ghurye and Olkin (1969) that allows to perceive the estimated synthetic likelihood version as a pseudo-marginal, once again wrt a target that differs from the original one. And the bias reappears under mis-specification, that is when the summary statistics are not normally distributed. It seems difficult to assess this normality or absence thereof in realistic situations.

“However, when the distribution of the summary statistic is highly irregular, the output of BSL cannot be trusted, while ABC represents a robust alternative in such cases.”

To make synthetic likelihood and ABC algorithms compatible, the authors chose a Normal kernel for ABC. Still, the equivalence is imperfect in that the covariance matrix need be chosen in the ABC case and is estimated in the synthetic one. I am also lost to the argument that the synthetic version is more efficient than ABC, in general (page 8). As for the examples, the first one uses a toy Poisson posterior with a single sufficient summary statistic, which is not very representative of complex situations where summary statistics are extremes or discrete. As acknowledged by the authors this is a case when the Normality assumption applies. For an integer support hidden process like the Ricker model, normality vanishes and the outcomes of ANC and synthetic likelihood differ, which makes it difficult to compare the inferential properties of both versions (rather than the acceptance rates), while using a 13-dimension statistic for estimating a 3-dimension parameter is not recommended for ABC, as discussed by Li and Fearnhead (2017). The same issue appears in the realistic cell motility example, with 145 summaries versus two parameters. (In the philogenies studied by DIYABC, the number of summary statistics is about the same but we now advocate a projection to the parameter dimension by the medium of random forests.)

Given the similarity between both approaches, I wonder at a confluence between them, where synthetic likelihood could maybe be used to devise PCA on the summary statistics and facilitate their projection on a space with much smaller dimensions. Or estimating the mean and variance functions in the synthetic likelihood towards producing directly simulations of the summary statistics.

machine learning methods are useful for ABC [or my first PCI Evol Biol!]

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , on November 23, 2017 by xi'an

While I am still working on setting a PCI [peer community in] Comput Stats, having secure sponsorship of some societies (ASA, KSS, RSS, SFdS, and hopefully ISBA), my coauthors Jean-Michel Marin and Louis Raynal submitted our paper ABC random forests for Bayesian parameter inference to PCI Evol Biol. And after a few months of review, including a revision accounting for the reviewers’ requests, our paper stood the test and the recommendation by Michael Blum and Dennis Prangle got published there. Great news, and hopefully helpful for our submission within the coming days!

lazy ABC…what?!

Posted in Kids, pictures, Statistics with tags , , , , , on November 8, 2017 by xi'an