“A typical adaptive MCMC sampler will approximately optimize performance given the kind of sampler chosen in the first place, but it will not optimize among the variety of samplers that could have been chosen.”

**L**ast February (2018), Dao Nguyen and five co-authors arXived a paper that I missed. On a new version of adaptive MCMC that aims at selecting a wider range of proposal kernels. Still requiring a by-hand selection of this collection of kernels… Among the points addressed, beyond the theoretical guarantees that the adaptive scheme does not jeopardize convergence to the proper target, are a meta-exploration of the set of combinations of samplers and integration of the computational speed in the assessment of each sampler. Including the very difficulty of assessing mixing. One could deem the index of the proposal as an extra (cyber-)parameter to its generic parameter (like the scale in the random walk), but the discreteness of this index makes the extension more delicate than expected. And justifies the distinction between internal and external parameters. The notion of a worst-mixing dimension is quite appealing and connects with the long-term hope that one could spend the maximum fraction of the sampler runtime over the directions that are poorly mixing, while still keeping the target as should be. The adaptive scheme is illustrated on several realistic models with rather convincing gains in efficiency and time.

The convergence tools are inspired from Roberts and Rosenthal (2007), with an assumption of uniform ergodicity over all kernels considered therein which is both strong and delicate to assess in practical settings. Efficiency is rather unfortunately defined in terms of effective sample size, which is a measure of correlation or lack thereof, but which does not relate to the speed of escape from the basin of attraction of the starting point. I also wonder at the pertinence of the estimation of the effective sample size when the chain is based on different successive kernels, since the lack of correlation may be due to another kernel. Another calibration issue is the internal clock that relates to the average number of iterations required to tune properly a specific kernel, which again may be difficult to assess in a realistic situation. A last query is whether or not this scheme could be compared with an asynchronous (and valid) MCMC approach that exploits parallel capacities of the computer.