Archive for adaptive mixture importance sampling

IMS workshop [day 5]

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , on September 3, 2018 by xi'an

The last day of the starting workshop [and my last day in Singapore] was a day of importance [sampling] with talks by Matti Vihola opposing importance sampling and delayed acceptance and particle MCMC, related to several papers of his that I missed. To be continued in the coming weeks at the IMS, which is another reason to regret having to leave that early [as my Parisian semester starts this Monday with an undergrad class at 8:30!]

And then a talk by Joaquín Miguez on stabilizing importance sampling by truncation which reminded me very much of the later work by Andrew Gelman and Aki Vehtari on Pareto smoothed importance sampling, with further operators adapted to sequential settings and the similar drawback that when the importance sampler is poor, i.e., when the simulated points are all very far from the centre of mass, no amount of fudging with the weights will bring the points closer. AMIS made an appearance as a reference method, to be improved by this truncation of the weights, a wee bit surprising as it should bring the large weights of the earlier stages down.

Followed by an almost silent talk by Nick Whiteley, who having lost his voice to the air conditioning whispered his talk in the microphone. Having once faced a lost voice during an introductory lecture to a large undergraduate audience, I could not but completely commiserate for the hardship of the task. Although this made the audience most silent and attentive. His topic was the Viterbi process and its parallelisation, by using a truncated horizon (presenting connection with overdamped Langevin, eg Durmus and Moulines and Dalalyan).

And due to a pressing appointment with my son and his girlfriend [who were traveling through Singapore on that day] for a chili crab dinner on my way to the airport, I missed the final talk by Arnaud Doucet, where he was to reconsider PDMP algorithms without the continuous time layer, a perspective I find most appealing!

Overall, this was a quite diverse and rich [starting] seminar, backed by the superb organisation of the IMS and the smooth living conditions on the NUS campus [once I had mastered the bus routes], which would have made much more sense for me as part of a longer stay, which is actually what happened the previous time I visited the IMS (in 2005), again clashing with my course schedule at home… And as always, I am impressed with the city-state of Singapore, for the highly diverse food scene in particular, but also this [maybe illusory] impression of coexistence between communities. And even though the ecological footprint could certainly be decreased, measures to curb car ownership (with a 150% purchase tax) and use (with congestion charges).

multiple importance sampling

Posted in Books, Statistics, University life with tags , , , , , , , , on November 20, 2015 by xi'an

“Within this unified context, it is possible to interpret that all the MIS algorithms draw samples from a equal-weighted mixture distribution obtained from the set of available proposal pdfs.”

In a very special (important?!) week for importance sampling!, Elvira et al. arXived a paper about generalized multiple importance sampling. The setting is the same as in earlier papers by Veach and Gibas (1995) or Owen and Zhou (2000) [and in our AMIS paper], namely a collection of importance functions and of simulations from those functions. However, there is no adaptivity for the construction of the importance functions and no Markov (MCMC) dependence on the generation of the simulations.

“One of the goals of this paper is to provide the practitioner with solid theoretical results about the superiority of some specific MIS schemes.”

One first part deals with the fact that a random point taken from the conjunction of those samples is distributed from the equiweighted mixture. Which was a fact I had much appreciated when reading Owen and Zhou (2000). From there, the authors discuss the various choices of importance weighting. Meaning the different degrees of Rao-Blackwellisation that can be applied to the sample. As we discovered in our population Monte Carlo research [which is well-referred within this paper], conditioning too much leads to useless adaptivity. Again a sort of epiphany for me, in that a whole family of importance functions could be used for the same target expectation and the very same simulated value: it all depends on the degree of conditioning employed for the construction of the importance function. To get around the annoying fact that self-normalised estimators are never unbiased, the authors borrow Liu’s (2000) notion of proper importance sampling estimators, where the ratio of the expectations is returning the right quantity. (Which amounts to recover the correct normalising constant(s), I believe.) They then introduce five (5!) different possible importance weights that all produce proper estimators. However, those weights correspond to different sampling schemes, so do not apply to the same sample. In other words, they are not recycling weights as in AMIS. And do not cover the adaptive cases where the weights and parameters of the different proposals change along iterations. Unsurprisingly, the smallest variance estimator is the one based on sampling without replacement and an importance weight made of the entire mixture. But this result does not apply for the self-normalised version, whose variance remains intractable.

I find this survey of existing and non-existing multiple importance methods quite relevant and a must-read for my students (and beyond!). My reservations (for reservations there must be!) are that the study stops short of pushing further the optimisation. Indeed, the available importance functions are not equivalent in terms of the target and hence weighting them equally is sub-efficient. The adaptive part of the paper broaches upon this issue but does not conclude.

AMIS on-line!

Posted in R, Statistics, University life with tags , , on February 15, 2012 by xi'an

After many delays and exchanges of emails, our AMIS paper with Jean-Marie Cornuet, Jean-Michel Marin and Antonietta Mira eventually made it into the Scandinavian Journal of Statistics. I am quite glad it is now published as it will publicize the method which brings an automatic (if not exactly free!) improvement for any SMC scheme. (AMIS stands for adaptive mixture importance sampling.)

AMIS revised & resubmitted

Posted in R, Statistics, University life with tags , , , on December 19, 2010 by xi'an

After a thorough revision that removed most of the theoretical attempts at improving our understanding of AMIS convergence, we have now resubmitted the AMIS paper to Scandinavian Journal of Statistics and arXived the new version as well. (I remind the reader that AMIS stands for adaptive mixture importance sampling and that it implements an adaptive version of Owen and Zhou’s (2000, JASA) stabilisation mixture technique, using this correction on the past and present importance weights, at each iteration of this iterative algorithm.) The AMIS method starts being used in population genetics, including an on-going work by Jean-Marie Cornuet and a published paper in Molecular Biology and Evolution by Sirén, Marttinen and Corander. The challenge of properly demonstrating AMIS convergence remains open!