“The principle of indifference states that in the absence of prior information, all mutually exclusive models should be assigned equal prior probability.”

**C**olin LaMont and Paul Wiggins arxived a paper on Lindley’s paradox a few days ago. The above quote is the (standard) argument for picking (½,½) partition between the two hypotheses, which I object to if only because it does not stand for multiple embedded models. The main point in the paper is to argue about the loss of resolution induced by averaging against the prior, as illustrated by the picture above for the N(0,1) versus N(μ,1) toy problem. What they call resolution is the lowest possible mean estimate for which the null is rejected by the Bayes factor (assuming a rejection for Bayes factors larger than 1). While the detail is missing, I presume the different curves on the lower panel correspond to different choices of L when using U(-L,L) priors on μ… The “Bayesian rejoinder” to the Lindley-Bartlett paradox (p.4) is in tune with my interpretation, namely that as the prior mass under the alternative gets more and more spread out, there is less and less prior support for reasonable values of the parameter, hence a growing tendency to accept the null. This is an illustration of the long-lasting impact of the prior on the posterior probability of the model, because the data cannot impact the tails very much.

“If the true prior is known, Bayesian inference using the true prior is optimal.”

This sentence and the arguments following is meaningless in my opinion as knowing the “true” prior makes the Bayesian debate superfluous. If there was a unique, Nature provided, known prior π, it would loose its original meaning to become part of the (frequentist) model. The argument is actually mostly used in negative, namely that since it is not know we should not follow a Bayesian approach: this is, e.g., the main criticism in Inferential Models. But there is no such thing as a “true” prior! (Or a “true’ model, all things considered!) In the current paper, this pseudo-natural approach to priors is utilised to justify a return to the pseudo-Bayes factors of the 1990’s, when one part of the data is used to stabilise and proper-ise the (improper) prior, and a second part to run the test *per se*. This includes an interesting insight on the limiting cases of partitioning corresponding to AIC and BIC, respectively, that I had not seen before. With the surprising conclusion that “AIC is the derivative of BIC”!