**L**ast December, Gunnar Taraldsen, Jarle Tufto, and Bo H. Lindqvist arXived a paper on using priors that lead to improper posteriors and [trying to] getting away with it! The central concept in their approach is Rényi’s generalisation of Kolmogorov’s version to define conditional probability distributions from infinite mass measures by conditioning on finite mass measurable sets. A position adopted by Dennis Lindley in his 1964 book .And already discussed in a few ‘Og’s posts. While the theory thus developed indeed allows for the manipulation of improper posteriors, I have difficulties with the inferential aspects of the construct, since one cannot condition on an arbitrary finite measurable set without prior information. Things get a wee bit more outwardly when considering “data” with infinite mass, in Section 4.2, since they cannot be properly normalised (although I find the example of the degenerate multivariate Gaussian distribution puzzling as it is not a matter of improperness, since the degenerate Gaussian has a well-defined density against the right dominating measure). The paper also discusses marginalisation paradoxes, by acknowledging that marginalisation is no longer feasible with improper quantities. And the Jeffreys-Lindley paradox, with a resolution that uses the sum of the Dirac mass at the null, δ⁰, and of the Lebesgue measure on the real line, λ, as the dominating measure. This indeed solves the issue of the arbitrary constant in the Bayes factor, since it is “the same” on the null hypothesis and elsewhere, but I do not buy the argument, as I see no reason to favour δ⁰+λ over 3.141516 δ⁰+λ or δ⁰+1.61718 λ… (This section 4.5 also illustrates that the choice of the sequence of conditioning sets has an impact on the limiting measure, in the Rényi sense.) In conclusion, after reading the paper, I remain uncertain as to how to exploit this generalisation from an inferential (Bayesian?) viewpoint, since improper posteriors do not clearly lead to well-defined inferential procedures…

## Archive for Andrei Kolmogorov

## statistics with improper posteriors [or not]

Posted in Statistics with tags Alfréd Rényi, Andrei Kolmogorov, Dennis Lindley, improper posteriors, improper priors, Jeffreys-Lindley paradox, marginalisation paradoxes on March 6, 2019 by xi'an## 10 great ideas about chance [book preview]

Posted in Books, pictures, Statistics, University life with tags Abraham Wald, Alan Turing, Allais' paradox, Alonzo Church, Andrei Kolmogorov, BFF4, book review, Borel-Kolmogorov paradox, Brian Skyrms, Bruno de Finetti, Cardano's formula, CHANCE, David Hume, Dutch book argument, equiprobability, exchangeability, Frank Ramsey, gambling, Gerolamo Cardano, Henri Poincaré, heuristics, Jakob Bernoulli, John Maynard Keynes, John von Neumann, Karl Popper, Martin-Löf, measure theory, p-values, Persi Diaconis, Pierre Simon Laplace, PUP, Radon-Nikodym Theorem, randomness, Richard von Mises, sufficiency, Thomas Bayes, Venn diagram on November 13, 2017 by xi'an*[As I happened to be a reviewer of this book by Persi Diaconis and Brian Skyrms, I had the opportunity (and privilege!) to go through its earlier version. Here are the [edited] comments I sent back to PUP and the authors about this earlier version. All in all, a terrific book!!!]*

**T**he historical introduction (“measurement”) of this book is most interesting, especially its analogy of chance with length. I would have appreciated a connection earlier than Cardano, like some of the Greek philosophers even though I gladly discovered there that Cardano was not only responsible for the closed form solutions to the third degree equation. I would also have liked to see more comments on the vexing issue of *equiprobability*: we all spend (if not waste) hours in the classroom explaining to (or arguing with) students why their solution is not correct. And they sometimes never get it! [And we sometimes get it wrong as well..!] Why is such a simple concept so hard to explicit? In short, but this is nothing but a personal choice, I would have made the chapter more conceptual and less chronologically historical.

“Coherence is again a question of consistent evaluations of a betting arrangement that can be implemented in alternative ways.” (p.46)

The second chapter, about Frank Ramsey, is interesting, if only because it puts this “man of genius” back under the spotlight when he has all but been forgotten. (At least in my circles.) And for joining probability and utility together. And for postulating that probability can be derived from expectations rather than the opposite. Even though betting or gambling has a (negative) stigma in many cultures. At least gambling for money, since most of our actions involve some degree of betting. But not in a rational or reasoned manner. (Of course, this is not a mathematical but rather a psychological objection.) Further, the justification through betting is somewhat tautological in that it assumes probabilities are true probabilities from the start. For instance, the Dutch book example on p.39 produces a gain of .2 only if the probabilities are correct.

> gain=rep(0,1e4) > for (t in 1:1e4){ + p=rexp(3);p=p/sum(p) + gain[t]=(p[1]*(1-.6)+p[2]*(1-.2)+p[3]*(.9-1))/sum(p)} > hist(gain)

As I made it clear at the BFF4 conference last Spring, I now realise I have never really adhered to the Dutch book argument. This may be why I find the chapter somewhat unbalanced with not enough written on utilities and too much on Dutch books.

“The force of accumulating evidence made it less and less plausible to hold that subjective probability is, in general, approximate psychology.” (p.55)

A chapter on “psychology” may come as a surprise, but I feel *a posteriori* that it is appropriate. Most of it is about the Allais paradox. Plus entries on Ellesberg’s distinction between risk and uncertainty, with only the former being quantifiable by “objective” probabilities. And on Tversky’s and Kahneman’s distinction between heuristics, and the framing effect, i.e., how the way propositions are expressed impacts the choice of decision makers. However, it is leaving me unclear about the conclusion that the fact that people behave irrationally should not prevent a reliance on utility theory. Unclear because when taking actions involving other actors their potentially irrational choices should also be taken into account. (This is mostly nitpicking.)

“This is Bernoulli’s swindle. Try to make it precise and it falls apart. The conditional probabilities go in different directions, the desired intervals are of different quantities, and the desired probabilities are different probabilities.” (p.66)

The next chapter (“frequency”) is about Bernoulli’s Law of Large numbers and the stabilisation of frequencies, with von Mises making it the basis of his approach to probability. And Birkhoff’s extension which is capital for the development of stochastic processes. And later for MCMC. I like the notions of “disreputable twin” (p.63) and “Bernoulli’s swindle” about the idea that “chance is frequency”. The authors call the identification of probabilities as limits of frequencies Bernoulli‘s swindle, because it cannot handle zero probability events. With a nice link with the testing fallacy of equating rejection of the null with acceptance of the alternative. And an interesting description as to how Venn perceived the fallacy but could not overcome it: “If Venn’s theory appears to be full of holes, it is to his credit that he saw them himself.” The description of von Mises’ Kollectiven [and the welcome intervention of Abraham Wald] clarifies my previous and partial understanding of the notion, although I am unsure it is that clear for all potential readers. I also appreciate the connection with the very notion of *randomness* which has not yet found I fear a satisfactory definition. This chapter asks more (interesting) questions than it brings answers (to those or others). But enough, this is a brilliant chapter!

“…a random variable, the notion that Kac found mysterious in early expositions of probability theory.” (p.87)

Chapter 5 (“mathematics”) is very important [from my perspective] in that it justifies the necessity to associate measure theory with probability if one wishes to evolve further than urns and dices. To entitle Kolmogorov to posit his axioms of probability. And to define properly conditional probabilities as random variables (as my third students fail to realise). I enjoyed very much reading this chapter, but it may prove difficult to read for readers with no or little background in measure (although some advanced mathematical details have vanished from the published version). Still, this chapter constitutes a strong argument for preserving measure theory courses in graduate programs. As an aside, I find it amazing that mathematicians (even Kac!) had not at first realised the connection between measure theory and probability (p.84), but maybe not so amazing given the difficulty many still have with the notion of conditional probability. (Now, I would have liked to see some description of Borel’s paradox when it is mentioned (p.89).

“Nothing hangs on a flat prior (…) Nothing hangs on a unique quantification of ignorance.” (p.115)

The following chapter (“inverse inference”) is about Thomas Bayes and his posthumous theorem, with an introduction setting the theorem at the centre of the Hume-Price-Bayes triangle. (It is nice that the authors include a picture of the original version of the essay, as the initial title is much more explicit than the published version!) A short coverage, in tune with the fact that Bayes only contributed a twenty-plus paper to the field. And to be logically followed by a second part [formerly another chapter] on Pierre-Simon Laplace, both parts focussing on the selection of prior distributions on the probability of a Binomial (coin tossing) distribution. Emerging into a discussion of the position of statistics within or even outside mathematics. (And the assertion that Fisher was the Einstein of Statistics on p.120 may be disputed by many readers!)

“So it is perfectly legitimate to use Bayes’ mathematics even if we believe that chance does not exist.” (p.124)

The seventh chapter is about Bruno de Finetti with his astounding representation of exchangeable sequences as being mixtures of iid sequences. Defining an implicit prior on the side. While the description sticks to binary events, it gets quickly more advanced with the notion of partial and Markov exchangeability. With the most interesting connection between those exchangeabilities and sufficiency. (I would however disagree with the statement that “Bayes was the father of parametric Bayesian analysis” [p.133] as this is extrapolating too much from the Essay.) My next remark may be non-sensical, but I would have welcomed an entry at the end of the chapter on cases where the exchangeability representation fails, for instance those cases when there is no sufficiency structure to exploit in the model. A bonus to the chapter is a description of Birkhoff’s ergodic theorem “as a generalisation of de Finetti” (p..134-136), plus half a dozen pages of appendices on more technical aspects of de Finetti’s theorem.

“We want random sequences to pass all tests of randomness, with tests being computationally implemented”. (p.151)

The eighth chapter (“algorithmic randomness”) comes (again!) as a surprise as it centres on the character of Per Martin-Löf who is little known in statistics circles. (The chapter starts with a picture of him with the iconic Oberwolfach sculpture in the background.) Martin-Löf’s work concentrates on the notion of randomness, in a mathematical rather than probabilistic sense, and on the algorithmic consequences. I like very much the section on random generators. Including a mention of our old friend RANDU, the 16 planes random generator! This chapter connects with Chapter 4 since von Mises also attempted to define a random sequence. To the point it feels slightly repetitive (for instance Jean Ville is mentioned in rather similar terms in both chapters). Martin-Löf’s central notion is computability, which forces us to visit Turing’s machine. And its role in the undecidability of some logical statements. And Church’s recursive functions. (With a link not exploited here to the notion of probabilistic programming, where one language is actually named Church, after Alonzo Church.) Back to Martin-Löf, (I do not see how his test for randomness can be implemented on a real machine as the whole test requires going through the entire sequence: since this notion connects with von Mises’ Kollektivs, I am missing the point!) And then Kolmororov is brought back with his own notion of complexity (which is also Chaitin’s and Solomonov’s). Overall this is a pretty hard chapter both because of the notions it introduces and because I do not feel it is completely conclusive about the notion(s) of randomness. A side remark about casino hustlers and their “exploitation” of weak random generators: I believe Jeff Rosenthal has a similar if maybe simpler story in his book about Canadian lotteries.

“Does quantum mechanics need a different notion of probability? We think not.” (p.180)

The penultimate chapter is about Boltzmann and the notion of “physical chance”. Or statistical physics. A story that involves Zermelo and Poincaré, And Gibbs, Maxwell and the Ehrenfests. The discussion focus on the definition of probability in a thermodynamic setting, opposing time frequencies to space frequencies. Which requires ergodicity and hence Birkhoff [no surprise, this is about ergodicity!] as well as von Neumann. This reaches a point where conjectures in the theory are yet open. What I always (if presumably naïvely) find fascinating in this topic is the fact that ergodicity operates without requiring randomness. Dynamical systems can enjoy ergodic theorem, while being completely deterministic.) This chapter also discusses quantum mechanics, which main tenet requires probability. Which needs to be defined, from a frequency or a subjective perspective. And the Bernoulli shift that brings us back to random generators. The authors briefly mention the Einstein-Podolsky-Rosen paradox, which sounds more metaphysical than mathematical in my opinion, although they get to great details to explain Bell’s conclusion that quantum theory leads to a mathematical impossibility (but they lost me along the way). Except that we “are left with quantum probabilities” (p.183). And the chapter leaves me still uncertain as to why statistical mechanics carries the label *statistical*. As it does not seem to involve inference at all.

“If you don’t like calling these ignorance priors on the ground that they may be sharply peaked, call them nondogmatic priors or skeptical priors, because these priors are quite in the spirit of ancient skepticism.” (p.199)

And then the last chapter (“induction”) brings us back to Hume and the 18th Century, where somehow “everything” [including statistics] started! Except that Hume’s strong scepticism (or skepticism) makes induction seemingly impossible. (A perspective with which I agree to some extent, if not to Keynes’ extreme version, when considering for instance financial time series as stationary. And a reason why I do not see the criticisms contained in the Black Swan as pertinent because they savage normality while accepting stationarity.) The chapter rediscusses Bayes’ and Laplace’s contributions to inference as well, challenging Hume’s conclusion of the impossibility to finer. Even though the representation of ignorance is not unique (p.199). And the authors call again for de Finetti’s representation theorem as bypassing the issue of whether or not there is such a thing as chance. And escaping inductive scepticism. (The section about Goodman’s grue hypothesis is somewhat distracting, maybe because I have always found it quite artificial and based on a linguistic pun rather than a logical contradiction.) The part about (Richard) Jeffrey is quite new to me but ends up quite abruptly! Similarly about Popper and his exclusion of induction. From this chapter, I appreciated very much the section on skeptical priors and its analysis from a meta-probabilist perspective.

There is no conclusion to the book, but to end up with a chapter on induction seems quite appropriate. (But there is an appendix as a probability tutorial, mentioning Monte Carlo resolutions. Plus notes on all chapters. And a commented bibliography.) Definitely recommended!

*[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Books Review section in CHANCE. As appropriate for a book about Chance!]*

## a new paradigm for improper priors

Posted in Books, pictures, Statistics, Travel with tags Alfréd Rényi, Andrei Kolmogorov, axioms of probability, convergence of Gibbs samplers, improper priors, σ-algebra, marginalisation paradoxes, Norway, Trondheim on November 6, 2017 by xi'an**G**unnar Taraldsen and co-authors have arXived a short note on using improper priors from a new perspective. Generalising an earlier 2016 paper in JSPI on the same topic. Which both relate to a concept introduced by Rényi (who himself attributes the idea to Kolmogorov). Namely that random variables measures are to be associated with arbitrary measures [not necessarily σ-finite measures, the later defining σ-finite random variables], rather than those with total mass one. Which allows for an alternate notion of conditional probability in the case of σ-finite random variables, with the perk that this conditional probability distribution is itself of mass 1 (a.e.). Which we know happens when moving from prior to proper posterior.

I remain puzzled by the 2016 paper though as I do not follow the meaning of a *random variable* associated with an *infinite mass probability measure*. If the point is limited to construct posterior probability distributions associated with improper priors, there is little value in doing so. The argument in the 2016 paper is however that one can then define a conditional distribution in marginalisation paradoxes à la Stone, Dawid and Zidek (1973) where the marginal does not exist. Solving with this formalism the said marginalisation paradoxes as conditional distributions are only defined for σ-finite random variables. Which gives a fairly different conclusion from either Stone, Dawid and Zidek (1973) [with whom I agree, namely that there is no paradox because there is no “joint” distribution] or Jaynes (1973) [with whom I less agree!, in that the use of an invariant measure to make the discrepancy go away is not a particularly strong argument in favour of this measure]. The 2016 paper also draws an interesting connection with the study by Jim Hobert and George Casella (in Jim’s thesis) of [null recurrent or transient] Gibbs samplers with no joint [proper] distribution. Which in some situations can produce proper subchains, a phenomenon later exhibited by Alan Gelfand and Sujit Sahu (and Xiao-Li Meng as well if I correctly remember!). But I see no advantage in following this formalism, as it does not impact whether the chain is transient or null recurrent, or anything connected with its implementation. Plus a link to the approximation of improper priors by sequences of proper ones by Bioche and Druihlet I discussed a while ago.

## from least squares to signal processing and particle filtering

Posted in Books, Kids, Statistics, University life with tags Andrei Kolmogorov, auxiliary particle filter, Carl Friedrich Gauss, importance sampling, Kalman filter, R.E. Kálmán, Shannon, signal processing, stochastic processes on June 6, 2017 by xi'an**N**ozer Singpurwalla, Nick. Polson, and Refik Soyer have just arXived a remarkable survey on the history of signal processing, from Gauß, Yule, Kolmogorov and Wiener, to Ragazzini, Shanon, Kálmán [who, I was surprised to learn, died in Gainesville last year!], Gibbs sampling, and the particle filters of the 1990’s.

## Conditional love [guest post]

Posted in Books, Kids, Statistics, University life with tags Andrei Kolmogorov, axioms of probability, Bayes rule, Bayesian nonparametrics, Bayesian statistics, bootstrap, Bruno de Finetti, Céline Dion, David Draper, Dirichlet process, Edwin Jaynes, exchangeability, extendibility, information, JSM 2015, MCMC, plausibility, Richard Cox, Series B, Stone-Weierstrass, Theory of Probability on August 4, 2015 by xi'an*[When Dan Simpson told me he was reading Terenin’s and Draper’s latest arXival in a nice Bath pub—and not a nice bath tub!—, I asked him for a blog entry and he agreed. Here is his piece, read at your own risk! If you remember to skip the part about Céline Dion, you should enjoy it very much!!!]*

**P**robability has traditionally been described, as per Kolmogorov and his ardent follower Katy Perry, unconditionally. This is, of course, excellent for those of us who really like measure theory, as the maths is identical. Unfortunately mathematical convenience is not necessarily enough and a large part of the applied statistical community is working with Bayesian methods. These are unavoidably conditional and, as such, it is natural to ask if there is a fundamentally conditional basis for probability.

Bruno de Finetti—and later Richard Cox and Edwin Jaynes—considered conditional bases for Bayesian probability that are, unfortunately, incomplete. The critical problem is that they mainly consider finite state spaces and construct finitely additive systems of conditional probability. For a variety of reasons, neither of these restrictions hold much truck in the modern world of statistics.

In a recently arXiv’d paper, Alexander Terenin and David Draper devise a set of axioms that make the Cox-Jaynes system of conditional probability rigorous. Furthermore, they show that the complete set of Kolmogorov axioms (including countable additivity) can be derived as theorems from their axioms by conditioning on the entire sample space.

This is a deep and fundamental paper, which unfortunately means that I most probably do not grasp it’s complexities (especially as, for some reason, I keep reading it in pubs!). However I’m going to have a shot at having some thoughts on it, because I feel like it’s the sort of paper one should have thoughts on. Continue reading

## about randomness (im Hamburg)

Posted in Statistics, Travel, University life with tags Andrei Kolmogorov, Bayesian statistics, CERN, DESY, Die Hard, Frederik James, Germany, Hamburg, Likelihood Principle, Marsaglia, Pierre Lecuyer, pseudo-random generator, randomness on February 20, 2013 by xi'an**T**rue randomness was the topic of the *`Random numbers; fifty years later’* talk in DESY by Frederick James from CERN. I had discussed a while ago a puzzling book related to this topic. This talk went along a rather different route, focussing on random generators. James put this claim that there are computer based physical generators that are truly random. (He had this assertion that statisticians do not understand randomness because they do not know quantum mechanics.) He distinguished those from pseudo-random generators: “*nobody understood why they were (almost) random”, “IBM did not know how to generate random numbers”*… But then spent the whole talk discussing those pseudo-random generators. Among other pieces of trivia, James mentioned that George Marsaglia was the one exhibiting the hyperplane features of congruential generators. That Knuth achieved no successful definition of what randomness is in his otherwise wonderful books! James thus introduced Kolmogorov’s mixing (not Kolmogorov’s complexity, mind you!) as advocated by Soviet physicists to underlie randomness. Not producing anything useful for RNGs in the 60’s. He then moved to the famous paper by Ferrenberg, Landau and Wong (1992) that I remember reading more or less at the time. In connection with the phase transition critical slowing down phenomena in Ising model simulations. And connecting with the Wang-Landau algorithm of flipping many sites at once (which exhibited long-term dependences in the generators). Most interestingly, a central character in this story is Martin Lüscher, based in DESY, who expressed the standard generator of the time RCARRY into one studied by those Soviet mathematicians,

X’=AX

showing that it enjoyed Kolmogorov mixing, but with a very poor Lyapunov coefficient. I partly lost track there as RCARRY was not perfect. And on how this Kolmogorov mixing would relate to long-term dependencies. One explanation by James was that this property is only asymptotic. (I would even say statistical!) Also interestingly, the 1994 paper by Lüscher produces the number of steps necessary to attain complete mixing, namely 15 steps, which thus works as a cutoff point. (I wonder why a 15-step RCARRY is slower, since A^{15} can be computed at once… It may be due to the fact that A is sparse while A^{15} is not.) James mentioned that Marsaglia’s *Die Hard* battery of tests is now obsolete and superseded by Pierre Lecuyer’s TestU01.

**I**n conclusion, I did very much like this presentation from an insider, but still do not feel it makes a contribution to the debate on randomness, as it stayed put on pseudorandom generators. To keep the connection with von Neumann, they all produce wrong answers from a randomness point of view, if not from a statistical one. (A final quote from the talk: “Among statisticians and number theorists who are supposed to be specialists, they do not know about Kolmogorov mixing.”) *[Discussing with Fred James at the reception after the talk was obviously extremely pleasant, as he happened to know a lot of my Bayesian acquaintances!]*

## Decision systems and nonstochastic randomness

Posted in Books, Statistics, University life with tags Andrei Kolmogorov, Bayesian decision theory, book review, information theory, randomness, Richard von Mises on October 26, 2011 by xi'an“

Thus the informativity of stochastic experiment turned out to depend on the Bayesian system and to coincide to within the scale factor with the previous “value of information”.” V. Ivanenko,, p.208Decision systems and nonstochastic randomness

**T**his book, ** Decision systems and nonstochastic randomness**, written by the Ukrainian researcher Victor Ivanenko, is related to decision theory and information theory, albeit with a statistical component as well. It however works at a fairly formal level and the reading is certainly not light. The randomness it address is the type formalised by Andreï Kolmogorov (also covered in the book

**I**

*Randomness through Computation**[rather negatively]*reviewed a few months ago, inducing angry comments and scathing criticisms in the process). The terminology is slightly different from the usual one, but the basics are those of decision theory as in De Groot (1970). However, the tone quickly gets much more mathematical and the book lost me early in Chapter 3 (

*Indifferent uncertainty*) on a casual reading. The following chapter on non-stochastic randomness reminded me of von Mises for its use of infinite sequences, and of the above book for its purpose, but otherwise offered an uninterrupted array of definitions and theorems that sounded utterly remote from statistical problems. After failing to make sense of the chapter on the informativity of experiment in Bayesian decision problems, I simply gave up… I thus cannot judge from this cursory reading whether or not the book is “useful in describing real situations of decision-making” (p.208). It just sounds very remote from my centres of interest.

*(Anyone interested by writing a review?)*