Archive for applied Bayesian analysis

Bayes @ NYT

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , on August 8, 2020 by xi'an

A tribune in the NYT of yesterday on the importance of being Bayesian. When an epidemiologist. Tribune that was forwarded to me by a few friends (and which I missed on my addictive monitoring of the journal!). It is written by , a Canadian journalist writing about mathematics (and obviously statistics). And it brings to the general public the main motivation for adopting a Bayesian approach, namely its coherent handling of uncertainty and its ability to update in the face of new information. (Although it might be noted that other flavours of statistical analysis are also able to update their conclusions when given more data.) The COVID situation is a perfect case study in Bayesianism, in that there are so many levels of uncertainty and imprecision, from the models themselves, to the data, to the outcome of the tests, &tc. The article is journalisty, of course, but it quotes from a range of statisticians and epidemiologists, including Susan Holmes, whom I learned was quarantined 105 days in rural Portugal!, developing a hierarchical Bayes modelling of the prevalent  SEIR model, and David Spiegelhalter, discussing Cromwell’s Law (or better, humility law, for avoiding the reference to a fanatic and tyrannic Puritan who put Ireland to fire and the sword!, and had in fact very little humility for himself). Reading the comments is both hilarious (it does not take long to reach the point when Trump is mentioned, and Taleb’s stance on models and tails makes an appearance) and revealing, as many readers do not understand the meaning of Bayes’ inversion between causes and effects, or even the meaning of Jeffreys’ bar, |, as conditioning.

souvenirs de Luminy

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on July 6, 2020 by xi'an

just in case your summer of British conferences is not yet fully-booked…

Posted in Statistics with tags , , , , , , , , , , , on May 11, 2018 by xi'an

Masterclass in Bayesian Statistics in Marseilles next Fall

Posted in Books, Kids, Mountains, pictures, R, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , on April 9, 2018 by xi'an

This post is to announce a second occurrence of the exciting “masterclass in Bayesian Statistics” that we organised in 2016, near Marseilles. It will take place on 22-26 October 2018 once more at CIRM (Centre International de Recherches Mathématiques, Luminy, Marseilles, France). The targeted audience includes all scientists interested in learning how Bayesian inference may be used to tackle the practical problems they face in their own research. In particular PhD students and post-docs should benefit most directly from this masterclass. Among the invited speakers, Kerrie Mengersen from QUT, Brisbane, visiting Marseilles this Fall, will deliver a series of lectures on the interface between Bayesian statistics and applied modelling, Havard Rue from KAUST will talk on computing with INLA, and Aki Vehtari from Aalto U, Helsinki, will give a course on Bayesian model assessment and model choice. There will be two tutorials on R and on Stan.

All interested participants in this masterclass should pre-register as early as possible, given that the total attendance is limited to roughly 90 participants. Some specific funding for local expenses (i.e., food + accommodation on-siteat CIRM) is available (thanks to CIRM, and potentially to Fondation Jacques Hadamard, to be confirmed); this funding will be attributed by the scientific committee, with high priority to PhD students and post-docs.

Practicals of Uncertainty [book review]

Posted in Books, Statistics, University life with tags , , , , , , , on December 22, 2017 by xi'an

On my way to the O’Bayes 2017 conference in Austin, I [paradoxically!] went through Jay Kadane’s Pragmatics of Uncertainty, which had been published earlier this year by CRC Press. The book is to be seen as a practical illustration of the Principles of Uncertainty Jay wrote in 2011 (and I reviewed for CHANCE). The avowed purpose is to allow the reader to check through Jay’s applied work whether or not he had “made good” on setting out clearly the motivations for his subjective Bayesian modelling. (While I presume the use of the same P of U in both books is mostly a coincidence, I started wondering how a third P of U volume could be called. Perils of Uncertainty? Peddlers of Uncertainty? The game is afoot!)

The structure of the book is a collection of fifteen case studies undertaken by Jay over the past 30 years, covering paleontology, survey sampling, legal expertises, physics, climate, and even medieval Norwegian history. Each chapter starts with a short introduction that often explains how he came by the problem (most often as an interesting PhD student consulting project at CMU), what were the difficulties in the analysis, and what became of his co-authors. As noted by the author, the main bulk of each chapter is the reprint (in a unified style) of the paper and most of these papers are actually and freely available on-line. The chapter always concludes with an epilogue (or post-mortem) that re-considers (very briefly) what had been done and what could have been done and whether or not the Bayesian perspective was useful for the problem (unsurprisingly so for the majority of the chapters!). There are also reading suggestions in the other P of U and a few exercises.

“The purpose of the book is philosophical, to address, with specific examples, the question of whether Bayesian statistics is ready for prime time. Can it be used in a variety of applied settings to address real applied problems?”

The book thus comes as a logical complement of the Principles, to demonstrate how Jay himself did apply his Bayesian principles to specific cases and how one can set the construction of a prior, of a loss function or of a statistical model in identifiable parts that can then be criticised or reanalysed. I find browsing through this series of fourteen different problems fascinating and exhilarating, while I admire the dedication of Jay to every case he presents in the book. I also feel that this comes as a perfect complement to the earlier P of U, in that it makes refering to a complete application of a given principle most straightforward, the problem being entirely described, analysed, and in most cases solved within a given chapter. A few chapters have discussions, being published in the Valencia meeting proceedings or another journal with discussions.

While all papers have been reset in the book style, I wish the graphs had been edited as well as they do not always look pretty. Although this would have implied a massive effort, it would have also been great had each chapter and problem been re-analysed or at least discussed by another fellow (?!) Bayesian in order to illustrate the impact of individual modelling sensibilities. This may however be a future project for a graduate class. Assuming all datasets are available, which is unclear from the text.

“We think however that Bayes factors are overemphasized. In the very special case in which there are only two possible “states of the world”, Bayes factors are sufficient. However in the typical case in which there are many possible states of the world, Bayes factors are sufficient only when the decision-maker’s loss has only two values.” (p. 278)

The above is in Jay’s reply to a comment from John Skilling regretting the absence of marginal likelihoods in the chapter. Reply to which I completely subscribe.

[Usual warning: this review should find its way into CHANCE book reviews at some point, with a fairly similar content.]