Archive for applied Bayesian analysis

Bayes Rules! [book review]

Posted in Books, Kids, Mountains, pictures, R, Running, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , on July 5, 2022 by xi'an

Bayes Rules! is a new introductory textbook on Applied Bayesian Model(l)ing, written by Alicia Johnson (Macalester College), Miles Ott (Johnson & Johnson), and Mine Dogucu (University of California Irvine). Textbook sent to me by CRC Press for review. It is available (free) online as a website and has a github site, as well as a bayesrule R package. (Which reminds me that both our own book R packages, bayess and mcsm, have gone obsolete on CRAN! And that I should find time to figure out the issue for an upgrading…)

As far as I can tell [from abroad and from only teaching students with a math background], Bayes Rules! seems to be catering to early (US) undergraduate students with very little exposure to mathematical statistics or probability, as it introduces basic probability notions like pmf, joint distribution, and Bayes’ theorem (as well as Greek letters!) and shies away from integration or algebra (a covariance matrix occurs on page 437 with a lot . For instance, the Normal-Normal conjugacy derivation is considered a “mouthful” (page 113). The exposition is somewhat stretched along the 500⁺ pages as a result, imho, which is presumably a feature shared with most textbooks at this level, and, accordingly, the exercises and quizzes are more about intuition and reproducing the contents of the chapter than technical. In fact, I did not spot there a mention of sufficiency, consistency, posterior concentration (almost made on page 113), improper priors, ergodicity, irreducibility, &tc., while other notions are not precisely defined, like ESS, weakly informative (page 234) or vague priors (page 77), prior information—which makes the negative answer to the quiz “All priors are informative”  (page 90) rather confusing—, R-hat, density plot, scaled likelihood, and more.

As an alternative to “technical derivations” Bayes Rules! centres on intuition and simulation (yay!) via its bayesrule R package. Itself relying on rstan. Learning from example (as R code is always provided), the book proceeds through conjugate priors, MCMC (Metropolis-Hasting) methods, regression models, and hierarchical regression models. Quite impressive given the limited prerequisites set by the authors. (I appreciated the representations of the prior-likelihood-posterior, especially in the sequential case.)

Regarding the “hot tip” (page 108) that the posterior mean always stands between the prior mean and the data mean, this should be made conditional on a conjugate setting and a mean parameterisation. Defining MCMC as a method that produces a sequence of realisations that are not from the target makes a point, except of course that there are settings where the realisations are from the target, for instance after a renewal event. Tuning MCMC should remain a partial mystery to readers after reading Chapter 7 as the Goldilocks principle is quite vague. Similarly, the derivation of the hyperparameters in a novel setting (not covered by the book) should prove a challenge, even though the readers are encouraged to “go forth and do some Bayes things” (page 509).

While Bayes factors are supported for some hypothesis testing (with no point null), model comparison follows more exploratory methods like X validation and expected log-predictive comparison.

The examples and exercises are diverse (if mostly US centric), modern (including cultural references that completely escape me), and often reflect on the authors’ societal concerns. In particular, their concern about a fair use of the inferred models is preminent, even though a quantitative assessment of the degree of fairness would require a much more advanced perspective than the book allows… (In that respect, Exercise 18.2 and the following ones are about book banning (in the US). Given the progressive tone of the book, and the recent ban of math textbooks in the US, I wonder if some conservative boards would consider banning it!) Concerning the Himalaya submitting running example (Chapters 18 & 19), where the probability to summit is conditional on the age of the climber and the use of additional oxygen, I am somewhat surprised that the altitude of the targeted peak is not included as a covariate. For instance, Ama Dablam (6848 m) is compared with Annapurna I (8091 m), which has the highest fatality-to-summit ratio (38%) of all. This should matter more than age: the Aosta guide Abele Blanc climbed Annapurna without oxygen at age 57! More to the point, the (practical) detailed examples do not bring unexpected conclusions, as for instance the fact that runners [thrice alas!] tend to slow down with age.

A geographical comment: Uluru (page 267) is not a city!, but an impressive sandstone monolith in the heart of Australia, a 5 hours drive away from Alice Springs. And historical mentions: Alan Turing (page 10) and the team at Bletchley Park indeed used Bayes factors (and sequential analysis) in cracking the Enigma, but this remained classified information for quite a while. Arianna Rosenbluth (page 10, but missing on page 165) was indeed a major contributor to Metropolis et al.  (1953, not cited), but would not qualify as a Bayesian statistician as the goal of their algorithm was a characterisation of the Boltzman (or Gibbs) distribution, not statistical inference. And David Blackwell’s (page 10) Basic Statistics is possibly the earliest instance of an introductory Bayesian and decision-theory textbook, but it never mentions Bayes or Bayesianism.

[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Book Review section in CHANCE.]

moralizing gods drive Nature rejection

Posted in Statistics with tags , , , , , , , on August 29, 2021 by xi'an

simplified Bayesian analysis

Posted in Statistics with tags , , , , , , , , , , , , on February 10, 2021 by xi'an

A colleague from Dauphine sent me a paper by Carlo Graziani on a Bayesian analysis of vaccine efficiency, asking for my opinion. The Bayesian side is quite simple: given two Poisson observations, N~P(μ) and M~P(ν), there exists a reparameterisation of (μ,ν) into

e=1-μ/rν  and  λ=ν(1+(1-e)r)=μ+ν

vaccine efficiency and expectation of N+M, respectively, when r is the vaccine-to-placebo ratio of person-times at risk, ie the ratio of the numbers of participants in each group. Reparameterisation such that the likelihood factorises into a function of e and a function of λ. Using a product prior for this parameterisation leads to a posterior on e times a posterior on λ. This is a nice remark, which may have been made earlier (as for instance another approach to infer about e while treating λ as a nuisance parameter is to condition on N+M). The paper then proposes as an application of this remark an analysis of the results of three SARS-Cov-2 vaccines, meaning using the pairs (N,M) for each vaccine and deriving credible intervals, which sounds more like an exercise in basic Bayesian inference than a fundamental step in assessing the efficiency of the vaccines…

Bayes @ NYT

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , on August 8, 2020 by xi'an

A tribune in the NYT of yesterday on the importance of being Bayesian. When an epidemiologist. Tribune that was forwarded to me by a few friends (and which I missed on my addictive monitoring of the journal!). It is written by , a Canadian journalist writing about mathematics (and obviously statistics). And it brings to the general public the main motivation for adopting a Bayesian approach, namely its coherent handling of uncertainty and its ability to update in the face of new information. (Although it might be noted that other flavours of statistical analysis are also able to update their conclusions when given more data.) The COVID situation is a perfect case study in Bayesianism, in that there are so many levels of uncertainty and imprecision, from the models themselves, to the data, to the outcome of the tests, &tc. The article is journalisty, of course, but it quotes from a range of statisticians and epidemiologists, including Susan Holmes, whom I learned was quarantined 105 days in rural Portugal!, developing a hierarchical Bayes modelling of the prevalent  SEIR model, and David Spiegelhalter, discussing Cromwell’s Law (or better, humility law, for avoiding the reference to a fanatic and tyrannic Puritan who put Ireland to fire and the sword!, and had in fact very little humility for himself). Reading the comments is both hilarious (it does not take long to reach the point when Trump is mentioned, and Taleb’s stance on models and tails makes an appearance) and revealing, as many readers do not understand the meaning of Bayes’ inversion between causes and effects, or even the meaning of Jeffreys’ bar, |, as conditioning.

souvenirs de Luminy

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on July 6, 2020 by xi'an

%d bloggers like this: