Archive for Aris Spanos

“an outstanding paper that covers the Jeffreys-Lindley paradox”…

Posted in Statistics, University life with tags , , , , , , , , on December 4, 2013 by xi'an

“This is, in this revised version, an outstanding paper that covers the Jeffreys-Lindley paradox (JLP) in exceptional depth and that unravels the philosophical differences between different schools of inference with the help of the JLP. From the analysis of this paradox, the author convincingly elaborates the principles of Bayesian and severity-based inferences, and engages in a thorough review of the latter’s account of the JLP in Spanos (2013).” Anonymous

I have now received a second round of reviews of my paper, “On the Jeffreys-Lindleys paradox” (submitted to Philosophy of Science) and the reports are quite positive (or even extremely positive as in the above quote!). The requests for changes are directed to clarify points, improve the background coverage, and simplify my heavy style (e.g., cutting Proustian sentences). These requests were easily addressed (hopefully to the satisfaction of the reviewers) and, thanks to the week in Warwick, I have already sent the paper back to the journal, with high hopes for acceptance. The new version has also been arXived. I must add that some parts of the reviews sounded much better than my original prose and I was almost tempted to include them in the final version. Take for instance

“As a result, the reader obtains not only a better insight into what is at stake in the JLP, going beyond the results of Spanos (2013) and Sprenger (2013), but also a much better understanding of the epistemic function and mechanics of statistical tests. This is a major achievement given the philosophical controversies that have haunted the topic for decades. Recent insights from Bayesian statistics are integrated into the article and make sure that it is mathematically up to date, but the technical and foundational aspects of the paper are well-balanced.” Anonymous

on the Jeffreys-Lindley’s paradox (revision)

Posted in Statistics, University life with tags , , , , , , , , , on September 17, 2013 by xi'an

As mentioned here a few days ago, I have been revising my paper on the Jeffreys-Lindley’s paradox paper for Philosophy of Science. It came as a bit of a (very pleasant) surprise that this journal was ready to consider a revised version of the paper given that I have no formal training in philosophy and that the (first version of the) paper was rather hurriedly made of a short text written for the 95th birthday of Dennis Lindley and of my blog post on Aris Spanos’ “Who should be afraid of the Jeffreys-Lindley paradox?“, recently published in Philosophy of Science.  So I found both reviewers very supportive and I am grateful for their suggestions to improve both the scope and the presentation of the paper. It has been resubmitted and rearXived, and I am now waiting for the decision of the editorial team with the appropriate philosophical sense of detachment…

beware, nefarious Bayesians threaten to take over frequentism using loss functions as Trojan horses!

Posted in Books, pictures, Statistics with tags , , , , , , , , , , , , on November 12, 2012 by xi'an

“It is not a coincidence that textbooks written by Bayesian statisticians extol the virtue of the decision-theoretic perspective and then proceed to present the Bayesian approach as its natural extension.” (p.19)

“According to some Bayesians (see Robert, 2007), the risk function does represent a legitimate frequentist error because it is derived by taking expectations with respect to [the sampling density]. This argument is misleading for several reasons.” (p.18)

During my R exam, I read the recent arXiv posting by Aris Spanos on why “the decision theoretic perspective misrepresents the frequentist viewpoint”. The paper is entitled “Why the Decision Theoretic Perspective Misrepresents Frequentist Inference: ‘Nuts and Bolts’ vs. Learning from Data” and I found it at the very least puzzling…. The main theme is the one caricatured in the title of this post, namely that the decision-theoretic analysis of frequentist procedures is a trick brought by Bayesians to justify their own procedures. The fundamental argument behind this perspective is that decision theory operates in a “for all θ” referential while frequentist inference (in Spanos’ universe) is only concerned by one θ, the true value of the parameter. (Incidentally, the “nuts and bolt” refers to the only case when a decision-theoretic approach is relevant from a frequentist viewpoint, namely in factory quality control sampling.)

“The notions of a risk function and admissibility are inappropriate for frequentist inference because they do not represent legitimate error probabilities.” (p.3)

“An important dimension of frequentist inference that has not been adequately appreciated in the statistics literature concerns its objectives and underlying reasoning.” (p.10)

“The factual nature of frequentist reasoning in estimation also brings out the impertinence of the notion of admissibility stemming from its reliance on the quantifier ‘for all’.” (p.13)

One strange feature of the paper is that Aris Spanos seems to appropriate for himself the notion of frequentism, rejecting the choices made by (what I would call frequentist) pioneers like Wald, Neyman, “Lehmann and LeCam [sic]”, Stein. Apart from Fisher—and the paper is strongly grounded in neo-Fisherian revivalism—, the only frequentists seemingly finding grace in the eyes of the author are George Box, David Cox, and George Tiao. (The references are mostly to textbooks, incidentally.) Modern authors that clearly qualify as frequentists like Bickel, Donoho, Johnstone, or, to mention the French school, e.g., Birgé, Massart, Picard, Tsybakov, none of whom can be suspected of Bayesian inclinations!, do not appear either as satisfying those narrow tenets of frequentism. Furthermore, the concept of frequentist inference is never clearly defined within the paper. As in the above quote, the notion of “legitimate error probabilities” pops up repeatedly (15 times) within the whole manifesto without being explicitely defined. (The closest to a definition is found on page 17, where the significance level and the p-value are found to be legitimate.) Aris Spanos even rejects what I would call the von Mises basis of frequentism: “contrary to Bayesian claims, those error probabilities have nothing to to do with the temporal or the physical dimension of the long-run metaphor associated with repeated samples” (p.17), namely that a statistical  procedure cannot be evaluated on its long term performance… Continue reading