Archive for arithmetic mean

an arithmetic mean identity

Posted in Books, pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , , on December 19, 2019 by xi'an

A 2017 paper by Ana Pajor published in Bayesian Analysis addresses my favourite problem [of computing the marginal likelihood] and which I discussed on the ‘Og, linking with another paper by Lenk published in 2012 in JCGS. That I already discussed here last year. Lenk’s (2009) paper is actually using a technique related to the harmonic mean correction based on HPD regions Darren Wraith and myself proposed at MaxEnt 2009. And which Jean-Michel and I presented at Frontiers of statistical decision making and Bayesian analysis in 2010. As I had only vague memories about the arithmetic mean version, we discussed the paper together with graduate students in Paris Dauphine.

The arithmetic mean solution, representing the marginal likelihood as the prior average of the likelihood, is a well-known approach used as well as the basis for nested sampling. With the improvement consisting in restricting the simulation to a set Ð with sufficiently high posterior probability. I am quite uneasy about P(Ð|y) estimated by 1 as the shape of the set containing all posterior simulations is completely arbitrary, parameterisation dependent, and very random since based on the extremes of this posterior sample. Plus, the set Ð converges to the entire parameter space with the number of posterior simulations. An alternative that we advocated in our earlier paper is to take Ð as the HPD region or a variational Bayes version . But the central issue with the HPD regions is how to construct these from an MCMC output and how to compute both P(Ð) and P(Ð|y). It does not seem like a good idea to set P(Ð|x) to the intended α level for the HPD coverage. Using a non-parametric version for estimating Ð could be in the end the only reasonable solution.

As a test, I reran the example of a conjugate normal model used in the paper, based on (exact) simulations from both the prior and  the posterior, and obtained approximations that were all close from the true marginal. With Chib’s being exact in that case (of course!), and an arithmetic mean surprisingly close without an importance correction:

> print(c(hame,chme,came,chib))
[1] -107.6821 -106.5968 -115.5950 -115.3610

Both harmonic versions are of the right order but not trustworthy, the truncation to such a set Ð as the one chosen in this paper having little impact.