Archive for astrostatistics

Bayesian astrostats under Laplace’s gaze

Posted in Books, Kids, pictures, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , on October 11, 2016 by xi'an

This afternoon, I was part of a jury of an astrostatistics thesis, where the astronomy part was about binary objects in the Solar System, and the statistics part about detecting patterns in those objects, unsurprisingly. The first part was highly classical using several non-parametric tests like Kolmogorov-Smirnov to test whether those binary objects were different from single objects. While the p-values were very tiny, I felt these values were over-interpreted in the thesis, because the sample size of N=30 leads to some scepticism about numerical quantities like 0.0008. While I do not want to sound pushing for Bayesian solutions in every setting, this case is a good illustration of the nefarious power of p-values, which are almost always taken at face value, i.e., where 0.008 is understood in terms of the null hypothesis and not in terms of the observed realisation of the p-value. Even within a frequentist framework, the distribution of this p-value should be evaluated or estimated one way or another, as there is no reason to believe it is anywhere near a Uniform(0,1) distribution.The second part of the thesis was about the estimation of some parameters of the laws of the orbits of those dual objects and the point of interest for me was the purely mechanical construction of a likelihood function that was an exponential transform of a sum of residuals, made of squared differences between the observations and their expectations. Or a power of such differences. This was called the “statistical model” in the thesis and I presume in part of the astrostats literature. This reminded me of the first meeting I had with my colleagues from Besançon, where they could not use such mechanical versions because of intractable expectations and used instead simulations from their physical model, literally reinventing ABC. This resolution had the same feeling, closer to indirect inference than regular inference, although it took me half the defence to realise it.

The defence actually took part in the beautiful historical Perrault’s building of Observatoire de Paris, in downtown Paris, where Cassini, Arago and Le Verrier once ruled!  In the council room under paintings of major French astronomers, including Laplace himself, looking quite smug in his academician costume. The building is built around the Paris Zero Meridian (which got dethroned in 1911 by the Greenwich Zero Meridian, which I contemplated as a kid since my childhood church had the Greenwich drawn on the nave stones). The customary “pot” after the thesis and its validation by the jury was in the less historical cafeteria of the Observatoire, but it included a jazz big band, which made this thesis defence quite unique in many ways!

Savage-Dickey supermodels

Posted in Books, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on September 13, 2016 by xi'an

The Wider Image: Bolivia's cholita climbers: Combination picture shows Aymara indigenous women (L-R) Domitila Alana, 42, Bertha Vedia, 48, Lidia Huayllas, 48, and Dora Magueno, 50, posing for a photograph at the Huayna Potosi mountain, Bolivia April 6, 2016Combination picture shows Aymara indigenous women (L-R) Domitila Alana, 42, Bertha Vedia, 48, Lidia Huayllas, 48, and Dora Magueno, 50, posing for a photograph at the Huayna Potosi mountain, Bolivia April 6, 2016. (c.) REUTERS/David Mercado. REUTERS/David MercadoA. Mootoovaloo, B. Bassett, and M. Kunz just arXived a paper on the computation of Bayes factors by the Savage-Dickey representation through a supermodel (or encompassing model). (I wonder why Savage-Dickey is so popular in astronomy and cosmology statistical papers and not so much elsewhere.) Recall that the trick is to write the Bayes factor in favour of the encompasssing model as the ratio of the posterior and of the prior for the tested parameter (thus eliminating nuisance or common parameters) at its null value,


Modulo some continuity constraints on the prior density, and the assumption that the conditional prior on nuisance parameter is the same under the null model and the encompassing model [given the null value φ⁰]. If this sounds confusing or even shocking from a mathematical perspective, check the numerous previous entries on this topic on the ‘Og!

The supermodel created by the authors is a mixture of the original models, as in our paper, and… hold the presses!, it is a mixture of the likelihood functions, as in Phil O’Neill’s and Theodore Kypraios’ paper. Which is not mentioned in the current paper and should obviously be. In the current representation, the posterior distribution on the mixture weight α is a linear function of α involving both evidences, α(m¹-m²)+m², times the artificial prior on α. The resulting estimator of the Bayes factor thus shares features with bridge sampling, reversible jump, and the importance sampling version of nested sampling we developed in our Biometrika paper. In addition to O’Neill and Kypraios’s solution.

The following quote is inaccurate since the MCMC algorithm needs simulating the parameters of the compared models in realistic settings, hence representing the multidimensional integrals by Monte Carlo versions.

“Though we have a clever way of avoiding multidimensional integrals to calculate the Bayesian Evidence, this new method requires very efficient sampling and for a small number of dimensions is not faster than individual nested sampling runs.”

I actually wonder at the sheer rationale of running an intensive MCMC sampler in such a setting, when the weight α is completely artificial. It is only used to jump from one model to the next, which sound quite inefficient when compared with simulating from both models separately and independently. This approach can also be seen as a special case of Carlin’s and Chib’s (1995) alternative to reversible jump. Using instead the Savage-Dickey representation is of course infeasible. Which makes the overall reference to this method rather inappropriate in my opinion. Further, the examples processed in the paper all involve (natural) embedded models where the original Savage-Dickey approach applies. Creating an additional model to apply a pseudo-Savage-Dickey representation does not sound very compelling…

Incidentally, the paper also includes a discussion of a weird notion, the likelihood of the Bayes factor, B¹², which is plotted as a distribution in B¹², most strangely. The only other place I met this notion is in Murray Aitkin’s book. Something’s unclear there or in my head!

“One of the fundamental choices when using the supermodel approach is how to deal with common parameters to the two models.”

This is an interesting question, although maybe not so relevant for the Bayes factor issue where it should not matter. However, as in our paper, multiplying the number of parameters in the encompassing model may hinder convergence of the MCMC chain or reduce the precision of the approximation of the Bayes factor. Again, from a Bayes factor perspective, this does not matter [while it does in our perspective].

À l’Observatoire de Paris

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , on July 5, 2016 by xi'an

This Monday, I made a most pleasant trip to the Observatoire de Paris, which campus is located in Meudon and no longer in Paris. (There also is an Observatoire de Paris campus in downtown Paris, created in 1667, where no observation can take place.) Most pleasant for many reasons. First, I was to meet with Frédéric Arenou and two visiting astrostatisticians from Kolkata, India, whom I met in Bangalore two years ago. Working on a neat if no simple issue of inverted mean estimation. Second, because the place is beautiful, with great views of Paris (since the Observatoire is on a ridge), and with a classical-looking building actually made of recycled castle parts after the Franco-Prussian war of 1870, and because Frédéric gave us a grand tour of place. And third, because I went there by bike through the Forêt de Meudon which I did not suspect was that close to home and which I crossed on downhill muddy trails that made me feel far away from Paris! And giving me the opportunity to test the mettle of a new mountain bike elsewhere than again Parisian SUVs. (This was the first day of a relatively intense biking week, which really helped with the half-marathon training: San Francisco ½ is in less than a month!!! And I am in wave 2!)

postdoc position at Monash, Melbourne

Posted in Kids, pictures, Statistics, Travel, University life with tags , , , , , , on June 21, 2016 by xi'an

tram in front of Flinders St. Station, Melbourne, July 28, 2012[David Dowe sent me the following ad for a position of research fellow in statistics, machine learning, and Astrophysics at Monash University, Melbourne.]

RESEARCH FELLOW: in Statistics and Machine Learning for Astrophysics, Monash University, Australia, deadline 31 July.

We seek to fill a 2.5 year post-doctoral fellowship dedicated to extensions and applications of the Bayesian Minimum Message Length (MML) technique to the analysis of spectroscopic data from recent large astronomical surveys, such as GALAH (GALactic Archaeology with HERMES).  The position is based jointly within the Monash Centre for Astrophysics (MoCA, in the School of Physics and Astronomy) and the Faculty of Information Technology (FIT).

The successful applicant will develop and extend the MML method as needed, applying it to spectroscopic data from the GALAH project, with an aim to understanding nucleosynthesis in stars as well as the formation and evolution of our Galaxy (“galactic archaeology”). The position is based at the Clayton campus (in suburban Melbourne, Australia) of Monash University, which hosts approximately 56,000 equivalent full-time students spread across its Australian and off-shore campuses, and approximately 3500 academic staff.

 The successful applicant will work with world experts in both the Bayesian information-theoretic MML method as well as nuclear astrophysics.  The immediate supervisors will be Professor John Lattanzio (MoCA), Associate Professor David Dowe (FIT) and Dr Aldeida Aleti (FIT).

exoplanets at 99.999…%

Posted in Books, pictures, Statistics, University life with tags , , , , , on January 22, 2016 by xi'an

The latest Significance has a short article providing some coverage of the growing trend in the discovery of exoplanets, including new techniques used to detect those expoplanets from their impact on the associated stars. This [presumably] comes from the recent book Cosmos: The Infographics Book of Space [a side comment: new books seem to provide material for many articles in Significance these days!] and the above graph is also from the book, not the ultimate infographic representation in my opinion given that a simple superposition of lines could do as well. Or better.

¨A common approach to ruling out these sorts of false positives involves running sophisticated numerical algorithms, called Monte Carlo simulations, to explore a wide range of blend scenarios (…) A new planet discovery needs to have a confidence of (…) a one in a million chance that the result is in error.”

The above sentence is obviously of interest, first because the detection of false positives by Monte Carlo hints at a rough version of ABC to assess the likelihood of the observed phenomenon under the null [no detail provided] and second because the probability statement in the end is quite unclear as of its foundations… Reminding me of the Higgs boson controversy. The very last sentence of the article is however brilliant, albeit maybe unintentionaly so:

“To date, 1900 confirmed discoveries have been made. We have certainly come a long way from 1989.”

Yes, 89 down, strictly speaking!

JSM 2015 [day #3]

Posted in Books, Statistics, University life with tags , , , , , , , , , , on August 12, 2015 by xi'an

My first morning session was about inference for philogenies. While I was expecting some developments around Kingman’s  coalescent models my coauthors needed and developped ABC for, I was surprised to see models that were producing closed form (or close enough to) likelihoods. Due to strong restrictions on the population sizes and migration possibilities, as explained later to me by Vladimir Minin. No need for ABC there since MCMC was working on the species trees, with Vladimir Minin making use of [the Savage Award winner] Vinayak Rao’s approach on trees that differ from the coalescent. And enough structure to even consider and demonstrate tree identifiability in Laura Kubatko’s case.

I then stopped by the astrostatistics session as the first talk by Gwendolin Eddie was about galaxy mass estimation, a problem I may actually be working on in the Fall, but it ended up being a completely different problem and I was further surprised that the issue of whether or not the data was missing at random was not considered by the authors.searise3

Christening a session Unifying foundation(s) may be calling for trouble, at least from me! In this spirit, Xiao Li Meng gave a talk attempting at a sort of unification of the frequentist, Bayesian, and fiducial paradigms by introducing the notion of personalized inference, which is a notion I had vaguely thought of in the past. How much or how far do you condition upon? However, I have never thought of this justifying fiducial inference in any way and Xiao Li’s lively arguments during and after the session not enough to convince me of the opposite: Prior-free does not translate into (arbitrary) choice-free. In the earlier talk about confidence distributions by Regina Liu and Minge Xie, that I partly missed for Galactic reasons, I just entered into the room at the very time when ABC was briefly described as a confidence distribution because it was not producing a convergent approximation to the exact posterior, a logic that escapes me (unless those confidence distributions are described in such a loose way as to include about any method f inference). Dongchu Sun also gave us a crash course on reference priors, with a notion of random posteriors I had not heard of before… As well as constructive posteriors… (They seemed to mean constructible matching priors as far as I understood.)

The final talk in this session by Chuanhei Liu on a new approach (modestly!) called inferential model was incomprehensible, with the speaker repeatedly stating that the principles were too hard to explain in five minutes and needed an incoming book… I later took a brief look at an associated paper, which relates to fiducial inference and to Dempster’s belief functions. For me, it has the same Münchhausen feeling of creating a probability out of nothing, creating a distribution on the parameter by ignoring the fact that the fiducial equation x=a(θ,u) modifies the distribution of u once x is observed.

Bayesian model averaging in astrophysics [guest post]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , on August 12, 2015 by xi'an

.[Following my posting of a misfiled 2013 blog, Ewan Cameron told me of the impact of this paper in starting his own blog and I asked him for a guest post, resulting in this analysis, much deeper than mine. No warning necessary this time!]

Back in February 2013 when “Bayesian Model Averaging in Astrophysics: A Review” by Parkinson & Liddle (hereafter PL13) first appeared on the arXiv I was a keen, young(ish) postdoc eager to get stuck into debates about anything and everything ‘astro-statistical’. And with its seemingly glaring flaws, PL13 was more grist to the mill. However, despite my best efforts on various forums I couldn’t get a decent fight started over the right way to do model averaging (BMA) in astronomy, so out of sheer frustration two months later I made my own soapbox to shout from at Another Astrostatistics Blog. Having seen PL13 reviewed recently here on Xian’s Og it feels like the right time to revisit the subject and reflect on where BMA in astronomy is today.

As pointed out to me back in 2013 by Tom Loredo, the act of Bayesian model averaging has been around much longer than its name; indeed an early astronomical example appears in Gregory & Loredo (1992) in which the posterior mean representation of an unknown signal is constructed for an astronomical “light-curve”, averaging over a set of constant and periodic candidate models. Nevertheless the wider popularisation of model averaging in astronomy has only recently taken place through a variety of applications in cosmology: e.g. Liddle, Mukherjee, Parkinson & Wang (2006) and Vardanyan, Trotta & Silk (2011).

In contrast to earlier studies like Gregory & Loredo (1992)—or the classic review on BMA by Hoeting et al. (1999)—in which the target of model averaging is typically either a utility function, a set of future observations, or a latent parameter of the observational process (e.g. the unknown “light-curve” shape) shared naturally by all competing models, the proposal of cosmological BMA studies is to produce a model-averaged version of the posterior for a given ‘shared’ parameter: a so-called “model-averaged PDF”. This proposal didn’t sit well with me back in 2013, and it still doesn’t sit well with me today. Philosophically: without a model a parameter has no meaning, so why should we want to seek meaning in the marginalised distribution of a parameter over an entire set of models? And, practically: to put it another way, without knowing the model ‘label’ to which a given mass of model-averaged parameter probability belongs there’s nothing much useful we can do with this ‘PDF’: nothing much we can say about the data we’ve just analysed and nothing much we can say about future experiments. Whereas the space of the observed data is shared automatically by all competing models, it seems to me to be somehow “un-Bayesian” to place the further restriction that the parameters of separate models share the same scale and topology. I say “un-Bayesian” since this mode of model averaging suggests a formulation of the parameter space + prior pairing stronger than the statement of one’s prior beliefs for the distribution of observable data given the model. But I would be happy to hear arguments from the other side in the comments box below … ! Continue reading