Archive for auxiliary variable

amazing appendix

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , on February 13, 2018 by xi'an

In the first appendix of the 1995 Statistical Science paper of Besag, Green, Higdon and Mengersen, on MCMC, “Bayesian Computation and Stochastic Systems”, stands a fairly neat result I was not aware of (and which Arnaud Doucet, with his unrivalled knowledge of the literature!, pointed out to me in Oxford, avoiding me the tedium to try to prove it afresco!). I remember well reading a version of the paper in Fort Collins, Colorado, in 1993 (I think!) but nothing about this result.

It goes as follows: when running a Metropolis-within-Gibbs sampler for component x¹ of a collection of variates x¹,x²,…, thus aiming at simulating from the full conditional of x¹ given x⁻¹ by making a proposal q(x|x¹,x⁻¹), it is perfectly acceptable to use a proposal that depends on a parameter α (no surprise so far!) and to generate this parameter α anew at each iteration (still unsurprising as α can be taken as an auxiliary variable) and to have the distribution of this parameter α depending on the other variates x²,…, i.e., x⁻¹. This is the surprising part, as adding α as an auxiliary variable was messing up the update of x⁻¹. But the proof as found in the 1995 paper [page 35] does not require to consider α as such as it establishes global balance directly. (Or maybe still detailed balance when writing the whole Gibbs sampler as a cycle of Metropolis steps.) Terrific! And a whiff mysterious..!

same simulation, different acceptance

Posted in Books, Statistics with tags , , , on January 30, 2018 by xi'an

In doubly intractable settings, where the likelihood involves an intractable constant Z(θ), an auxiliary or pseudo- observation x is generated to incorporate strategically located densities in the acceptance probability towards cancelling out the Z(θ)’s. The funny thing is that Møller et al.  (2005) and Murray et al. (2006) both use the same simulations in their auxiliary algorithms, namely θ’~q(θ|θ,y) and x’~f(x|θ’), but return different acceptance probabilities. The former use an artificial target on the pair (θ’,x’) [with a free conditional on x’] while the later uses a pseudo-marginal argument to estimate the missing constant Z(θ) by importance sampling as noticed by Everitt (2012). This apparent paradox is rather common to simulation in that several importance weights can often be constructed for the same importance function. But in the case of doubly intractable distributions, the first approach offers a surprisingly wide variability in the selection of the conditional on x’, which can be absolutely any density g(x|θ,y). And hence could be optimised for maximal acceptance rate. Or maximal effective sample size. In the original paper of Møller et al.  (2005) a plug-in version f(x|θ) was suggested, with θ replaced with a crude estimate. This morning, when discussing both versions with Julien Stoehr, I realised that a geometric average of f(x|θ)’s could be used as well, since the intractable normalising constants would not be an issue [as opposed to an arithmetic or harmonic average]. I [idly] wonder if anything has been done in this direction…

estimating constants [survey]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on February 2, 2017 by xi'an

A new survey on Bayesian inference with intractable normalising constants was posted on arXiv yesterday by Jaewoo Park and Murali Haran. A rather massive work of 58 pages, almost handy for a short course on the topic! In particular, it goes through the most common MCMC methods with a detailed description, followed by comments on components to be calibrated and the potential theoretical backup. This includes for instance the method of Liang et al. (2016) that I reviewed a few months ago. As well as the Wang-Landau technique we proposed with Yves Atchadé and Nicolas Lartillot. And the noisy MCMC of Alquier et al. (2016), also reviewed a few months ago. (The Russian Roulette solution is only mentioned very briefly as” computationally very expensive”. But still used in some illustrations. The whole area of pseudo-marginal MCMC is also missing from the picture.)

“…auxiliary variable approaches tend to be more efficient than likelihood approximation approaches, though efficiencies vary quite a bit…”

The authors distinguish between MCMC methods where the normalizing constant is approximated and those where it is omitted by an auxiliary representation. The survey also distinguishes between asymptotically exact and asymptotically inexact solutions. For instance, using a finite number of MCMC steps instead of the associated target results in an asymptotically inexact method. The question that remains open is what to do with the output, i.e., whether or not there is a way to correct for this error. In the illustration for the Ising model, the double Metropolis-Hastings version of Liang et al. (2010) achieves for instance massive computational gains, but also exhibits a persistent bias that would go undetected were it the sole method implemented. This aspect of approximate inference is not really explored in the paper, but constitutes a major issue for modern statistics (and machine learning as well, when inference is taken into account.)

In conclusion, this survey provides a serious exploration of recent MCMC methods. It begs for a second part involving particle filters, which have often proven to be faster and more efficient than MCMC methods, at least in state space models. In that regard, Nicolas Chopin and James Ridgway examined further techniques when calling to leave the Pima Indians [dataset] alone.

auxiliary variable methods as ABC

Posted in Books, pictures, Statistics, University life with tags , , , , , on May 9, 2016 by xi'an

ruins of the abbey at Tynemouth, Sept. 03, 2013Dennis Prangle and Richard Everitt arXived a note today where they point out the identity between the auxiliary variable approach of Møller et al. (2006) [or rather its multiple or annealed version à la Murray] and [exact] ABC (as in our 2009 paper) in the case of Markov random fields. The connection between the two appears when using an importance sampling step in the ABC algorithm and running a Markov chain forward and backward the same number of steps as there are levels in the annealing scheme of MAV. Maybe more a curiosity than an indicator of a large phenomenon, since it is so rare that ABC can be use in its exact form.

Bayesian model comparison with intractable constants

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on February 8, 2016 by xi'an

abcIRichard Everitt, Adam Johansen (Warwick), Ellen Rowing and Melina Evdemon-Hogan have updated [on arXiv] a survey paper on the computation of Bayes factors in the presence of intractable normalising constants. Apparently destined for Statistics and Computing when considering the style. A great entry, in particular for those attending the CRiSM workshop Estimating Constants in a few months!

A question that came to me from reading the introduction to the paper is why a method like Møller et al.’s (2006) auxiliary variable trick should be considered more “exact” than the pseudo-marginal approach of Andrieu and Roberts (2009) since the later can equally be seen as an auxiliary variable approach. The answer was on the next page (!) as it is indeed a special case of Andrieu and Roberts (2009). Murray et al. (2006) also belongs to this group with a product-type importance sampling estimator, based on a sequence of tempered intermediaries… As noted by the authors, there is a whole spectrum of related methods in this area, some of which qualify as exact-approximate, inexact approximate and noisy versions.

Their main argument is to support importance sampling as the method of choice, including sequential Monte Carlo (SMC) for large dimensional parameters. The auxiliary variable of Møller et al.’s (2006) is then part of the importance scheme. In the first toy example, a Poisson is opposed to a Geometric distribution, as in our ABC model choice papers, for which a multiple auxiliary variable approach dominates both ABC and Simon Wood’s synthetic likelihood for a given computing cost. I did not spot which artificial choice was made for the Z(θ)’s in both models, since the constants are entirely known in those densities. A very interesting section of the paper is when envisioning biased approximations to the intractable density. If only because the importance weights are most often biased due to the renormalisation (possibly by resampling). And because the variance derivations are then intractable as well. However, due to this intractability, the paper can only approach the impact of those approximations via empirical experiments. This leads however to the interrogation on how to evaluate the validity of the approximation in settings where truth and even its magnitude are unknown… Cross-validation and bootstrap type evaluations may prove too costly in realistic problems. Using biased solutions thus mostly remains an open problem in my opinion.

The SMC part in the paper is equally interesting if only because it focuses on the data thinning idea studied by Chopin (2002) and many other papers in the recent years. This made me wonder why an alternative relying on a sequence of approximations to the target with tractable normalising constants could not be considered. A whole sequence of auxiliary variable completions sounds highly demanding in terms of computing budget and also requires a corresponding sequence of calibrations. (Now, ABC fares no better since it requires heavy simulations and repeated calibrations, while further exhibiting a damning missing link with the target density. ) Unfortunately, embarking upon a theoretical exploration of the properties of approximate SMC is quite difficult, as shown by the strong assumptions made in the paper to bound the total variation distance to the true target.