Archive for Basic and Applied Social Psychology

ASA’s statement on p-values [#2]

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , on March 9, 2016 by xi'an

 

It took a visit on FiveThirtyEight to realise the ASA statement I mentioned yesterday was followed by individual entries from most members of the panel, much more diverse and deeper than the statement itself! Without discussing each and all comments, some points I subscribe to

  • it does not make sense to try to replace the p-value and the 5% boundary by something else but of the same nature. This was the main line of our criticism of Valen Johnson’s PNAS paper with Andrew.
  • it does not either make sense to try to come up with a hard set answer about whether or not a certain parameter satisfies a certain constraint. A comparison of predictive performances at or around the observed data sounds much more sensible, if less definitive.
  • the Bayes factor is often advanced as a viable alternative to the p-value in those comments, but it suffers from difficulties exposed in our recent testing by mixture paper, one being the lack of absolute scale.
  • we seem unable to escape the landscape set by Neyman and Pearson when constructing their testing formalism, including the highly unrealistic 0-1 loss function. And the grossly asymmetric opposition between null and alternative hypotheses.
  • the behaviour of any procedure of choice should be evaluated under different scenarios, most likely by simulation, including some accounting for misspecified models. Which may require an extra bit of non-parametrics. And we should abstain from considering further than evaluating whether or not the data looks compatible with each of the scenarios. Or how much through the mixture representation.

ASA’s statement on p-values

Posted in Books, Statistics, University life with tags , , , , , on March 8, 2016 by xi'an

 

Last night I received an email from the ASA signed by Jessica Utts and Ron Wasserstein with the following sentence

“Widespread use of ‘statistical significance’ (generally interpreted as ‘p

In short, we envision a new era, in which the broad scientific community recognizes what statisticians have been advocating for many years. In this “post p

Is such an era beyond reach? We think not, but we need your help in making sure this opportunity is not lost.”

which is obviously missing important bits. The email was pointing out a free access American Statistician article warning about the misuses and over-interpretations of p-values. Which contains rather basic “principles” that p-values are not probabilities that the null is true, that there is no golden level against which to compare the p-value, that nominal p-values may be far from actual p-values, that they do not provide a measure of evidence per se, &tc. As written in the conclusion, “Nothing in the ASA statement is new”. But, besides calling for caution and the cumulative use of different assessments of evidence, this statement may leave the non-statistician completely nonplussed about how to proceed when testing hypotheses or comparing models. And make the decision of Basic and Applied Social Psychology of rejecting all arguments based on p-values sound sensible.

Incidentally, the article contains the completion of the first sentence [in red below], if not of the second:

“Widespread use of ‘statistical significance’ (generally interpreted as ‘p≤ 0.05”) as a license for making a claim of a scientific finding (or implied truth) leads to considerable distortion of the scientific process.

 

Le Monde and the replication crisis

Posted in Books, Kids, Statistics with tags , , , , , , , , , , , , , , , on September 17, 2015 by xi'an

An rather poor coverage of the latest article in Science on the replication crisis in psychology in Le Monde Sciences & Medicine weekly pages (and mentioned a few days ago on Andrew’s blog, with the terrific if unrelated poster for Blade Runner…):

L’étude repose également sur le rôle d’un critère très critiqué, la “valeur p”, qui est un indicateur statistique estimant la probabilité que l’effet soit bien significatif.

As you may guess from the above (pardon my French!), the author of this summary of the Science article (a) has never heard of a p-value (which translates as niveau de signification in French statistics books) and (b) confuses the probability of exceeding the observed quantity under the null with the probability of the alternative. The remainder of the paper is more classical, pointing out the need for preregistered protocols in experimental sciences. Even though it mostly states evidence, like the decrease in significant effects for prepublished protocols. Apart from this mostly useless entry, rather interesting snapshots in the issue: Stephen Hawking’s views on how information could escape a black hole, an IBM software for predicting schizophrenia, Parkinson disease as a result of hyperactive neurons, diseased Formica fusca ants taking some harmful drugs to heal, …

beyond subjective and objective in Statistics

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , on August 28, 2015 by xi'an

“At the level of discourse, we would like to move beyond a subjective vs. objective shouting match.” (p.30)

This paper by Andrew Gelman and Christian Hennig calls for the abandonment of the terms objective and subjective in (not solely Bayesian) statistics. And argue that there is more than mere prior information and data to the construction of a statistical analysis. The paper is articulated as the authors’ proposal, followed by four application examples, then a survey of the philosophy of science perspectives on objectivity and subjectivity in statistics and other sciences, next to a study of the subjective and objective aspects of the mainstream statistical streams, concluding with a discussion on the implementation of the proposed move. Continue reading

eliminating an important obstacle to creative thinking: statistics…

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , , on March 12, 2015 by xi'an

“We hope and anticipate that banning the NHSTP will have the effect of increasing the quality of submitted manuscripts by liberating authors from the stultified structure of NHSTP thinking thereby eliminating an important obstacle to creative thinking.”

About a month ago, David Trafimow and Michael Marks, the current editors of the journal Basic and Applied Social Psychology published an editorial banning all null hypothesis significance testing procedures (acronym-ed into the ugly NHSTP which sounds like a particularly nasty venereal disease!) from papers published by the journal. My first reaction was “Great! This will bring more substance to the papers by preventing significance fishing and undisclosed multiple testing! Power to the statisticians!” However, after reading the said editorial, I realised it was inspired by a nihilistic anti-statistical stance, backed by an apparent lack of understanding of the nature of statistical inference, rather than a call for saner and safer statistical practice. The editors most clearly state that inferential statistical procedures are no longer needed to publish in the journal, only “strong descriptive statistics”. Maybe to keep in tune with the “Basic” in the name of the journal!

“In the NHSTP, the problem is in traversing the distance from the probability of the finding, given the null hypothesis, to the probability of the null hypothesis, given the finding. Regarding confidence intervals, the problem is that, for example, a 95% confidence interval does not indicate that the parameter of interest has a 95% probability of being within the interval.”

The above quote could be a motivation for a Bayesian approach to the testing problem, a revolutionary stance for journal editors!, but it only illustrate that the editors wish for a procedure that would eliminate the uncertainty inherent to statistical inference, i.e., to decision making under… erm, uncertainty: “The state of the art remains uncertain.” To fail to separate significance from certainty is fairly appalling from an epistemological perspective and should be a case for impeachment, were any such thing to exist for a journal board. This means the editors cannot distinguish data from parameter and model from reality! Even more fundamentally, to bar statistical procedures from being used in a scientific study is nothing short of reactionary. While encouraging the inclusion of data is a step forward, restricting the validation or in-validation of hypotheses to gazing at descriptive statistics is many steps backward and does completely jeopardize the academic reputation of the journal, which editorial may end up being the last quoted paper. Is deconstruction now reaching psychology journals?! To quote from a critic of this approach, “Thus, the general weaknesses of the deconstructive enterprise become self-justifying. With such an approach I am indeed not sympathetic.” (Searle, 1983).

“The usual problem with Bayesian procedures is that they depend on some sort of Laplacian assumption to generate numbers where none exist (…) With respect to Bayesian procedures, we reserve the right to make case-by-case judgments, and thus Bayesian procedures are neither required nor banned from BASP.”

The section of Bayesian approaches is trying to be sympathetic to the Bayesian paradigm but again reflects upon the poor understanding of the authors. By “Laplacian assumption”, they mean Laplace´s Principle of Indifference, i.e., the use of uniform priors, which is not seriously considered as a sound principle since the mid-1930’s. Except maybe in recent papers of Trafimow. I also love the notion of “generat[ing] numbers when none exist”, as if the prior distribution had to be grounded in some physical reality! Although it is meaningless, it has some poetic value… (Plus, bringing Popper and Fisher to the rescue sounds like shooting Bayes himself in the foot.)  At least, the fact that the editors will consider Bayesian papers in a case-by-case basis indicate they may engage in a subjective Bayesian analysis of each paper rather than using an automated p-value against the 100% rejection bound!

[Note: this entry was suggested by Alexandra Schmidt, current ISBA President, towards an incoming column on this decision of Basic and Applied Social Psychology for the ISBA Bulletin.]