**I** recently came across an ABC paper in PLoS ONE by Xavier Rubio-Campillo applying this simulation technique to the validation of some differential equation models linking force sizes and values for both sides. The dataset is made of battle casualties separated into four periods, from *pike and musket* to the *American Civil War*. The outcome is used to compute an ABC Bayes factor but it seems this computation is highly dependent on the tolerance threshold. With highly variable numerical values. The most favoured model includes some fatigue effect about the decreasing efficiency of armies along time. While the paper somehow reminded me of a most peculiar book, I have no idea on the depth of this analysis, namely on how relevant it is to model a battle through a two-dimensional system of differential equations, given the numerous factors involved in the matter…

## Archive for Bayes factor

## ABC for wargames

Posted in Books, Kids, pictures, Statistics with tags ABC, ABC model choice, Bayes factor, differential equation, elves, PLoS ONE, warhammer on February 10, 2016 by xi'an## approximating evidence with missing data

Posted in Books, pictures, Statistics, University life with tags Bayes factor, Bayesian Choice, Bayesian model comparison, bridge sampling, Chib's approximation, defensive mixture, harmonic mean, importance sampling, MCMC algorithms, mixture, Monte Carlo Statistical Methods, nested sampling, Pima Indians, reversible jump MCMC, simulation, University of Warwick on December 23, 2015 by xi'an**P**anayiota Touloupou (Warwick), Naif Alzahrani, Peter Neal, Simon Spencer (Warwick) and Trevelyan McKinley arXived a paper yesterday on Model comparison with missing data using MCMC and importance sampling, where they proposed an importance sampling strategy based on an early MCMC run to approximate the marginal likelihood a.k.a. the evidence. Another instance of estimating a constant. It is thus similar to our Frontier paper with Jean-Michel, as well as to the recent Pima Indian survey of James and Nicolas. The authors give the difficulty to calibrate reversible jump MCMC as the starting point to their research. The importance sampler they use is the natural choice of a Gaussian or *t* distribution centred at some estimate of θ and with covariance matrix associated with Fisher’s information. Or derived from the warmup MCMC run. The comparison between the different approximations to the evidence are done first over longitudinal epidemiological models. Involving 11 parameters in the example processed therein. The competitors to the 9 versions of importance samplers investigated in the paper are the raw harmonic mean [rather than our HPD truncated version], Chib’s, path sampling and RJMCMC [which does not make much sense when comparing two models]. But neither bridge sampling, nor nested sampling. Without any surprise (!) harmonic means do not converge to the right value, but more surprisingly Chib’s method happens to be less accurate than most importance solutions studied therein. It may be due to the fact that Chib’s approximation requires three MCMC runs and hence is quite costly. The fact that the mixture (or defensive) importance sampling [with 5% weight on the prior] did best begs for a comparison with bridge sampling, no? The difficulty with such study is obviously that the results only apply in the setting of the simulation, hence that e.g. another mixture importance sampler or Chib’s solution would behave differently in another model. In particular, it is hard to judge of the impact of the dimensions of the parameter and of the missing data.

## model selection and multiple testing

Posted in Books, pictures, Statistics, Travel, University life with tags AIC, Bayes factor, Bayesian hypothesis testing, Bayesian model choice, Biarritz, BIC, Bordeaux, consistency, DIC, empirical Bayes, Hourtain, Madrid, pseudo-priors, The Bayesian Choice on October 23, 2015 by xi'an

**R**itabrata Dutta, Malgorzata Bogdan and Jayanta Ghosh recently arXived a survey paper on model selection and multiple testing. Which provides a good opportunity to reflect upon traditional Bayesian approaches to model choice. And potential alternatives. On my way back from Madrid, where I got a bit distracted when flying over the South-West French coast, from Biarritz to Bordeaux. Spotting the lake of Hourtain, where I spent my military training month, 29 years ago!

“On the basis of comparison of AIC and BIC, we suggest tentatively that model selection rules should be used for the purpose for which they were introduced. If they are used for other problems, a fresh justification is desirable. In one case, justification may take the form of a consistency theorem, in the other some sort of oracle inequality. Both may be hard to prove. Then one should have substantial numerical assessment over many different examples.”

The authors quickly replace the Bayes factor with BIC, because it is typically consistent. In the comparison between AIC and BIC they mention the connundrum of defining a prior on a nested model from the prior on the nesting model, a problem that has not been properly solved in my opinion. The above quote with its call to a large simulation study reminded me of the paper by Arnold & Loeppky about running such studies through ecdfs. That I did not see as solving the issue. The authors also discuss DIC and Lasso, without making much of a connection between those, or with the above. And then reach the parametric empirical Bayes approach to model selection exemplified by Ed George’s and Don Foster’s 2000 paper. Which achieves asymptotic optimality for posterior prediction loss (p.9). And which unifies a wide range of model selection approaches.

A second part of the survey considers the large p setting, where BIC is not a good approximation to the Bayes factor (when testing whether or not all mean entries are zero). And recalls that there are priors ensuring consistency for the Bayes factor in this very [restrictive] case. Then, in Section 4, the authors move to what they call “cross-validatory Bayes factors”, also known as partial Bayes factors and pseudo-Bayes factors, where the data is split to (a) make the improper prior proper and (b) run the comparison or test on the remaining data. They also show the surprising result that, provided the fraction of the data used to proper-ise the prior does not converge to one, the X validated Bayes factor remains consistent [for the special case above]. The last part of the paper concentrates on multiple testing but is more tentative and conjecturing about convergence results, centring on the differences between full Bayes and empirical Bayes. Then the plane landed in Paris and I stopped my reading, not feeling differently about the topic than when the plane started from Madrid.

## Mathematical underpinnings of Analytics (theory and applications)

Posted in Books, Statistics, University life with tags An Essay towards solving a Problem in the Doctrine of Chances, analytics, Bayes factor, Bayesian Analysis, book review, bootstrap, CHANCE, Friedrich Nietzsche, genetic algorithm, Laplace succession rule, logistic regression, machine learning, particle filter, Patti Smith, The Bayesian Choice, Yogi Berra on September 25, 2015 by xi'an

“Today, a week or two spent reading Jaynes’ book can be a life-changing experience.” (p.8)

**I** received this book by Peter Grindrod, Mathematical underpinnings of Analytics (theory and applications), from Oxford University Press, quite a while ago. (Not that long ago since the book got published in 2015.) As a book for review for CHANCE. And let it sit on my desk and in my travel bag for the same while as it was unclear to me that it was connected with Statistics and CHANCE. What is [are?!] *analytics*?! I did not find much of a definition of *analytics* when I at last opened the book, and even less mentions of statistics or machine-learning, but Wikipedia told me the following:

“Analytics is a multidimensional discipline. There is extensive use of mathematics and statistics, the use of descriptive techniques and predictive models to gain valuable knowledge from data—data analysis. The insights from data are used to recommend action or to guide decision making rooted in business context. Thus, analytics is not so much concerned with individual analyses or analysis steps, but with the entire methodology.”

Barring the absurdity of speaking of a “multidimensional discipline” [and even worse of linking with the mathematical notion of dimension!], this tells me analytics is a mix of data analysis and decision making. Hence relying on (some) statistics. Fine.

“Perhaps in ten years, time, the mathematics of behavioural analytics will be common place: every mathematics department will be doing some of it.”(p.10)

First, and to start with some positive words (!), a book that quotes both Friedrich Nietzsche and Patti Smith cannot get everything wrong! (Of course, including a most likely apocryphal quote from the now late Yogi Berra does not partake from this category!) Second, from a general perspective, I feel the book meanders its way through chapters towards a higher level of statistical consciousness, from graphs to clustering, to hidden Markov models, without precisely mentioning statistics or statistical model, while insisting very much upon Bayesian procedures and Bayesian thinking. Overall, I can relate to most items mentioned in Peter Grindrod’s book, but mostly by first reconstructing the notions behind. While I personally appreciate the distanced and often ironic tone of the book, reflecting upon the author’s experience in retail modelling, I am thus wondering at which audience Mathematical underpinnings of Analytics aims, for a practitioner would have a hard time jumping the gap between the concepts exposed therein and one’s practice, while a theoretician would require more formal and deeper entries on the topics broached by the book. I just doubt this entry will be enough to lead maths departments to adopt behavioural analytics as part of their curriculum… Continue reading

## Bayesian model averaging in astrophysics

Posted in Statistics, University life, Books with tags evidence, population Monte Carlo, Bayes factor, bridge sampling, computational statistics, adaptive importance sampling, model averaging, likelihood, Astrophysics, Monte Carlo technique, statistical analysis and data mining on July 29, 2015 by xi'an*[A 2013 post that somewhat got lost in a pile of postponed entries and referee’s reports…]*

**I**n this review paper, now published in *Statistical Analysis and Data Mining* 6, 3 (2013), David Parkinson and Andrew R. Liddle go over the (Bayesian) model selection and model averaging perspectives. Their argument in favour of model averaging is that model selection via Bayes factors may simply be too inconclusive to favour one model and only one model. While this is a correct perspective, this is about it for the theoretical background provided therein. The authors then move to the computational aspects and the first difficulty is their approximation (6) to the evidence

where they average the *likelihood x prior* terms over simulations from the posterior, which does not provide a valid (either unbiased or converging) approximation. They surprisingly fail to account for the huge statistical literature on evidence and Bayes factor approximation, incl. Chen, Shao and Ibrahim (2000). Which covers earlier developments like bridge sampling (Gelman and Meng, 1998).

As often the case in astrophysics, at least since 2007, the authors’ description of nested sampling drifts away from perceiving it as a regular Monte Carlo technique, with the same convergence speed n^{1/2} as other Monte Carlo techniques and the same dependence on dimension. It is certainly not the only simulation method where the produced “samples, as well as contributing to the evidence integral, can also be used as posterior samples.” The authors then move to “population Monte Carlo [which] is an adaptive form of importance sampling designed to give a good estimate of the evidence”, a particularly restrictive description of a generic adaptive importance sampling method (Cappé et al., 2004). The approximation of the evidence (9) based on PMC also seems invalid:

is missing the prior in the numerator. (The switch from θ in Section 3.1 to X in Section 3.4 is confusing.) Further, the sentence “PMC gives an unbiased estimator of the evidence in a very small number of such iterations” is misleading in that PMC is unbiased at each iteration. Reversible jump is not described at all (the supposedly higher efficiency of this algorithm is far from guaranteed when facing a small number of models, which is the case here, since the moves between models are governed by a random walk and the acceptance probabilities can be quite low).

The second quite unrelated part of the paper covers published applications in astrophysics. Unrelated because the three different methods exposed in the first part are not compared on the same dataset. Model averaging is obviously based on a computational device that explores the posteriors of the different models under comparison (or, rather, averaging), however no recommendation is found in the paper as to efficiently implement the averaging or anything of the kind. In conclusion, I thus find this review somehow anticlimactic.

## inflation, evidence and falsifiability

Posted in Books, pictures, Statistics, University life with tags astrostatistics, Bayes factor, Bayesian model choice, Bayesian paradigm, Ewan Cameron, Gottfried Leibnitz, Imperial College London, inflation, Karl Popper, monad, paradigm shift, Peter Coles, quantum gravity on July 27, 2015 by xi'an*[Ewan Cameron pointed this paper to me and blogged about his impressions a few weeks ago. And then Peter Coles wrote a (properly) critical blog entry yesterday. Here are my quick impressions, as an add-on.]*

“As the cosmological data continues to improve with its inevitable twists, it has become evident that whatever the observations turn out to be they will be lauded as \proof of inflation”.”G. Gubitosi et al.

**I**n an arXive with the above title, Gubitosi et al. embark upon a generic and critical [and astrostatistical] evaluation of Bayesian evidence and the Bayesian paradigm. Perfect topic and material for another blog post!

“Part of the problem stems from the widespread use of the concept of Bayesian evidence and the Bayes factor (…) The limitations of the existing formalism emerge, however, as soon as we insist on falsifiability as a pre-requisite for a scientific theory (….) the concept is more suited to playing the lottery than to enforcing falsifiability: winning is more important than being predictive.”G. Gubitosi et al.

It is somehow quite hard *not* to quote most of the paper, because prose such as the above abounds. Now, compared with standards, the authors introduce an higher level than models, called *paradigms*, as collections of models. (I wonder what is the next level, monads? universes? paradises?) Each paradigm is associated with a marginal likelihood, obtained by integrating over models and model parameters. Which is also the evidence of or for the paradigm. And then, assuming a prior on the paradigms, one can compute the posterior over the paradigms… What is the novelty, then, that “forces” falsifiability upon Bayesian testing (or the reverse)?!

“However, science is not about playing the lottery and winning, but falsifiability instead, that is, about winning given that you have bore the full brunt of potential loss, by taking full chances of not winning a priori. This is not well incorporated into the Bayesian evidence because the framework is designed for other ends, those of model selection rather than paradigm evaluation.”G. Gubitosi et al.

The paper starts by a criticism of the Bayes factor in the point null test of a Gaussian mean, as overly penalising the null against the alternative being only a power law. Not much new there, it is well known that the Bayes factor does not converge at the same speed under the null and under the alternative… The first proposal of those authors is to consider the distribution of the marginal likelihood of the null model under the [or a] prior predictive encompassing both hypotheses or only the alternative *[there is a lack of precision at this stage of the paper]*, in order to calibrate the observed value against the expected. What is the connection with falsifiability? The notion that, under the prior predictive, most of the mass is on very low values of the evidence, leading to concluding against the null. If replacing the null with the alternative marginal likelihood, its mass then becomes concentrated on the largest values of the evidence, which is translated as an *unfalsifiable* theory. In simpler terms, it means you can never prove a mean θ is different from zero. Not a tremendously item of news, all things considered…

“…we can measure the predictivity of a model (or paradigm) by examining the distribution of the Bayesian evidence assuming uniformly distributed data.”G. Gubitosi et al.

The alternative is to define a tail probability for the evidence, i.e. the probability to be below an arbitrarily set bound. What remains unclear to me in this notion is the definition of a prior on the data, as it seems to be model *dependent*, hence prohibits comparison between models since this would involve incompatible priors. The paper goes further into that direction by penalising models according to their predictability, P, as exp{-(1-P²)/P²}. And paradigms as well.

“(…) theoretical matters may end up being far more relevant than any probabilistic issues, of whatever nature. The fact that inflation is not an unavoidable part of any quantum gravity framework may prove to be its greatest undoing.”G. Gubitosi et al.

Establishing a principled way to weight models would certainly be a major step in the validation of posterior probabilities as a quantitative tool for Bayesian inference, as hinted at in my 1993 paper on the Lindley-Jeffreys paradox, but I do not see such a principle emerging from the paper. Not only because of the arbitrariness in constructing both the predictivity and the associated prior weight, but also because of the impossibility to define a joint predictive, that is a predictive across models, without including the weights of those models. This makes the prior probabilities appearing on “both sides” of the defining equation… (And I will not mention the issues of constructing a prior distribution of a Bayes factor that are related to Aitkin‘s integrated likelihood. And won’t obviously try to enter the cosmological debate about inflation.)

## astronomical evidence

Posted in pictures, Statistics, University life with tags ABC, ABC-MCMC, arXiv, astrostatistics, Bayes factor, Bayesian model selection, BAYSM 2014, dark energy, evidence, Ewan Cameron, falsification, reversible jump MCMC, Vienna on July 24, 2015 by xi'an**A**s I have a huge arXiv backlog and an even higher non-arXiv backlog, I cannot be certain I will find time to comment on those three recent and quite exciting postings connecting ABC with astro- and cosmo-statistics [thanks to Ewan for pointing out those to me!]:

- Weighted ABC: a new strategy for cluster strong lensing cosmology with simulations, by Madhura Killedar et al.
*[Madhura won one of the three prizes at the BAYESM meeting last year]*:

*“We investigate the uncertainty in the calculated likelihood,and consequential ability to compare competing cosmologies…”* - Inflation, evidence and falsifiability, by Giulia Gubitosi et al.:

“By considering toy models we illustrate how unfalsifiable models and paradigms are always favoured by the Bayes factor…”

- Bayesian model selection without evidences: application to the dark energy equation-of-state, by Sonke Hee et al.:

*“A method is presented for Bayesian model selection without explicitly computing evidences … without the need for reversible jump MCMC techniques.”*