## Archive for Bayes theorem

## Bayes plaque

Posted in Books, pictures, Statistics, Travel, University life with tags Bayes theorem, Edinburgh, FRS, plaque, Royal Society, Scotland, Thomas Bayes, University of Edinburgh on November 22, 2019 by xi'an## a hatchet job [book review]

Posted in Books, Statistics, University life with tags Bayes theorem, Bayesian statistics, betting, book review, Bruce Hill, Bruno de Finetti, JASA, John Hartigan, Likelihood Principle on July 20, 2019 by xi'an**B**y happenstance, I came across a rather savage review of John Hartigan’s Bayes Theory (1984) written by Bruce Hill in HASA, including the following slivers:

“By and large this book is at its best in developing the mathematical consequences of the theory and at its worst when dealing with the underlying ideas and concepts, which seems unfortunate since Bayesian statistics is above all an attempt to deal realistically with the nature of uncertainty and decision making.” B. Hill, JASA, 1986, p.569

“Unfortunately, those who had hoped for a serious contribution to the question will be disappointed.” B. Hill, JASA, 1986, p.569

“If the primary concern is mathematical convenience, not content or meaning, then the enterprise is a very different matter from what most of us think of as Bayesian approach.” B. Hill, JASA, 1986, p.570

“Perhaps in a century or two statisticians and probabilists will reach a similar state of maturity.” B. Hill, JASA, 1986, p.570“

Perhaps this is a good place to mention that the notation in the book is formidable. Bayes’s theorem appears in a form that is almost unrecognizable. As elsewhere, the mathematical treatment is elegant. but none of the deeper issues about the meaning and interpretation of conditional probability is discussed.” B. Hill, JASA, 1986, p.570

“The reader will find many intriguing ideas, much that is outrageous, and even some surprises (the likelihood principle is not mentioned, and conditional inference is just barely mentioned).” B. Hill, JASA, 1986, p.571

“What is disappointing to me is that with a little more discipline and effort with regard to the ideas underlying Bayesian statistics, this book could have been a major contribution to the theory.” B. Hill, JASA, 1986, p.571

Another review by William Sudderth (1985, Bulletin of the American Mathematical Society) is much kinder to the book, except for the complaint that “the pace is brisk and sometimes hard to follow”.

## Statistical rethinking [book review]

Posted in Books, Kids, R, Statistics, University life with tags Amazon, Bayes theorem, Bayesian data analysis, Bayesian Essentials with R, book review, CHANCE, code, convergence diagnostics, E.T. Jaynes, generalised linear models, golem, maths, matrix algebra, MCMC algorithms, mixtures of distributions, Monte Carlo Statistical Methods, Prague, R, robots, STAN, statistical modelling, Statistical rethinking on April 6, 2016 by xi'anStatistical Rethinking: A Bayesian Course with Examples in R and Stan is a new book by Richard McElreath that CRC Press sent me for review in CHANCE. While the book was already discussed on Andrew’s blog three months ago, and [rightly so!] enthusiastically recommended by Rasmus Bååth on Amazon, here are the reasons why I am quite impressed by Statistical Rethinking!

“Make no mistake: you will wreck Prague eventually.” (p.10)

While the book has a lot in common with Bayesian Data Analysis, from being in the same CRC series to adopting a pragmatic and weakly informative approach to Bayesian analysis, to supporting the use of STAN, it also nicely develops its own ecosystem and idiosyncrasies, with a noticeable Jaynesian bent. To start with, I like the highly personal style with clear attempts to make the concepts memorable for students by resorting to external concepts. The best example is the call to the myth of the golem in the first chapter, which McElreath uses as an warning for the use of statistical models (which almost are anagrams to golems!). Golems and models [and robots, another concept invented in Prague!] are man-made devices that strive to accomplish the goal set to them without heeding the consequences of their actions. This first chapter of Statistical Rethinking is setting the ground for the rest of the book and gets quite philosophical (albeit in a readable way!) as a result. In particular, there is a most coherent call against hypothesis testing, which by itself justifies the title of the book. Continue reading

## Bayes’ Rule [book review]

Posted in Books, Statistics, University life with tags Amazon, Bayes formula, Bayes rule, Bayes theorem, Bayesian Analysis, England, introductory textbooks, publishing, short course, Thomas Bayes' portrait, tutorial on July 10, 2014 by xi'an**T**his introduction to Bayesian Analysis, Bayes’ Rule, was written by James Stone from the University of Sheffield, who contacted CHANCE suggesting a review of his book. I thus bought it from amazon to check the contents. And write a review.

**F**irst, the format of the book. It is a short paper of 127 pages, plus 40 pages of glossary, appendices, references and index. I eventually found the name of the publisher, Sebtel Press, but for a while thought the book was self-produced. While the LaTeX output is fine and the (Matlab) graphs readable, pictures are not of the best quality and the display editing is minimal in that there are several huge white spaces between pages. Nothing major there, obviously, it simply makes the book look like course notes, but this is in no way detrimental to its potential appeal. (I will not comment on the numerous appearances of Bayes’ alleged portrait in the book.)

“… (on average) the adjusted value θ^{MAP}is more accurate than θ^{MLE}.” (p.82)

Bayes’ Rule has the interesting feature that, in the very first chapter, after spending a rather long time on Bayes’ formula, it introduces Bayes factors (p.15). With the somewhat confusing choice of calling the *prior* probabilities of hypotheses *marginal* probabilities. Even though they are indeed *marginal* given the joint, *marginal* is usually reserved for the sample, as in *marginal* likelihood. Before returning to more (binary) applications of Bayes’ formula for the rest of the chapter. The second chapter is about probability theory, which means here introducing the three axioms of probability and discussing geometric interpretations of those axioms and Bayes’ rule. Chapter 3 moves to the case of discrete random variables with more than two values, i.e. contingency tables, on which the range of probability distributions is (re-)defined and produces a new entry to Bayes’ rule. And to the MAP. Given this pattern, it is not surprising that Chapter 4 does the same for continuous parameters. The parameter of a coin flip. This allows for discussion of uniform and reference priors. Including maximum entropy priors à la Jaynes. And bootstrap samples presented as approximating the posterior distribution under the “fairest prior”. And even two pages on standard loss functions. This chapter is followed by a short chapter dedicated to estimating a normal mean, then another short one on exploring the notion of a continuous joint (Gaussian) density.

“To some people the wordBayesianis like a red rag to a bull.” (p.119)

Bayes’ Rule concludes with a chapter entitled *Bayesian wars*. A rather surprising choice, given the intended audience. Which is rather bound to confuse this audience… The first part is about probabilistic ways of representing information, leading to subjective probability. The discussion goes on for a few pages to justify the use of priors but I find completely unfair the argument that because Bayes’ rule is a mathematical theorem, it “has been proven to be true”. It is indeed a maths theorem, however that does not imply that any inference based on this theorem is correct! (A surprising parallel is Kadane’s Principles of Uncertainty with its anti-objective final chapter.)

**A**ll in all, I remain puzzled after reading Bayes’ Rule. Puzzled by the intended audience, as contrary to other books I recently reviewed, the author does not shy away from mathematical notations and concepts, even though he proceeds quite gently through the basics of probability. Therefore, potential readers need some modicum of mathematical background that some students may miss (although it actually corresponds to what my kids would have learned in high school). It could thus constitute a soft entry to Bayesian concepts, before taking a formal course on Bayesian analysis. Hence doing no harm to the perception of the field.

## an easy pun on conditional risk[cd]

Posted in Books, Kids, Statistics with tags Bayes theorem, beach, compatible conditional distributions, Laplace succession rule, xkcd on September 22, 2013 by xi'an## Albert Jacquard (1925-2013)

Posted in Books, Statistics with tags Albert Jacquard, Bayes theorem, Bayesian statistics, INED, INSEE, population genetics, Theory of Probability on September 21, 2013 by xi'an**A**lbert Jacquard passed away last week. He was a humanist, engaged in the defence of outcasts (*laissés pour compte*) like homeless and illegal immigrants. He had a regular chronicle of two minutes on France Culture that I used to listen to (when driving at that time of the day). In the obituaries published in the recent days, this side of the character was put forward, while very little was said about his scientific legacy. He was a statistician, first at INSEE, then at INED. After getting a PhD in genetics from Stanford in 1968, he got back to INED as a population geneticist, writing in 1978 his most famous book, *Éloge de la Différence*, against racial theories, which is the first in a long series of vulgarisation and philosophical books. Among his scientific books, he wrote the entry on Probabilités in the popular vulgarisation series “Que Sais-Je?”, with more than 40,000 copies sold and used by generations of students. (Among its 125 pages, the imposed length for a “Que Sais-Je?”, the book includes Bayes theorem and, more importantly, the Bayesian approach to estimating unknown probabilities!)