Archive for Bayesian inference

Lindley’s paradox as a loss of resolution

Posted in Books, pictures, Statistics with tags , , , , , , , , on November 9, 2016 by xi'an

“The principle of indifference states that in the absence of prior information, all mutually exclusive models should be assigned equal prior probability.”

lindleypColin LaMont and Paul Wiggins arxived a paper on Lindley’s paradox a few days ago. The above quote is the (standard) argument for picking (½,½) partition between the two hypotheses, which I object to if only because it does not stand for multiple embedded models. The main point in the paper is to argue about the loss of resolution induced by averaging against the prior, as illustrated by the picture above for the N(0,1) versus N(μ,1) toy problem. What they call resolution is the lowest possible mean estimate for which the null is rejected by the Bayes factor (assuming a rejection for Bayes factors larger than 1). While the detail is missing, I presume the different curves on the lower panel correspond to different choices of L when using U(-L,L) priors on μ… The “Bayesian rejoinder” to the Lindley-Bartlett paradox (p.4) is in tune with my interpretation, namely that as the prior mass under the alternative gets more and more spread out, there is less and less prior support for reasonable values of the parameter, hence a growing tendency to accept the null. This is an illustration of the long-lasting impact of the prior on the posterior probability of the model, because the data cannot impact the tails very much.

“If the true prior is known, Bayesian inference using the true prior is optimal.”

This sentence and the arguments following is meaningless in my opinion as knowing the “true” prior makes the Bayesian debate superfluous. If there was a unique, Nature provided, known prior π, it would loose its original meaning to become part of the (frequentist) model. The argument is actually mostly used in negative, namely that since it is not know we should not follow a Bayesian approach: this is, e.g., the main criticism in Inferential Models. But there is no such thing as a “true” prior! (Or a “true’ model, all things considered!) In the current paper, this pseudo-natural approach to priors is utilised to justify a return to the pseudo-Bayes factors of the 1990’s, when one part of the data is used to stabilise and proper-ise the (improper) prior, and a second part to run the test per se. This includes an interesting insight on the limiting cases of partitioning corresponding to AIC and BIC, respectively, that I had not seen before. With the surprising conclusion that “AIC is the derivative of BIC”!

SAS on Bayes

Posted in Books, Kids, pictures, R, Statistics, University life with tags , , , , , , , on November 8, 2016 by xi'an

Following a question on X Validated, I became aware of the following descriptions of the pros and cons of Bayesian analysis, as perceived by whoever (Tim Arnold?) wrote SAS/STAT(R) 9.2 User’s Guide, Second Edition. I replied more specifically on the point

It [Bayesian inference] provides inferences that are conditional on the data and are exact, without reliance on asymptotic approximation. Small sample inference proceeds in the same manner as if one had a large sample. Bayesian analysis also can estimate any functions of parameters directly, without using the “plug-in” method (a way to estimate functionals by plugging the estimated parameters in the functionals).

which I find utterly confusing and not particularly relevant. The other points in the list are more traditional, except for this one

It provides interpretable answers, such as “the true parameter θ has a probability of 0.95 of falling in a 95% credible interval.”

that I find somewhat unappealing in that the 95% probability has only relevance wrt to the resulting posterior, hence has no absolute (and definitely no frequentist) meaning. The criticisms of the prior selection

It does not tell you how to select a prior. There is no correct way to choose a prior. Bayesian inferences require skills to translate subjective prior beliefs into a mathematically formulated prior. If you do not proceed with caution, you can generate misleading results.

It can produce posterior distributions that are heavily influenced by the priors. From a practical point of view, it might sometimes be difficult to convince subject matter experts who do not agree with the validity of the chosen prior.

are traditional but nonetheless irksome. Once acknowledged there is no correct or true prior, it follows naturally that the resulting inference will depend on the choice of the prior and has to be understood conditional on the prior, which is why the credible interval has for instance an epistemic rather than frequentist interpretation. There is also little reason for trying to convince a fellow Bayesian statistician about one’s prior. Everything is conditional on the chosen prior and I see less and less why this should be an issue.

 

Monte Carlo with determinantal processes [reply from the authors]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , on September 22, 2016 by xi'an

[Rémi Bardenet and Adrien Hardy have written a reply to my comments of today on their paper, which is more readable as a post than as comments, so here it is. I appreciate the intention, as well as the perfect editing of the reply, suited for a direct posting!]

Thanks for your comments, Xian. As a foreword, a few people we met also had the intuition that DPPs would be relevant for Monte Carlo, but no result so far was backing this claim. As it turns out, we had to work hard to prove a CLT for importance-reweighted DPPs, using some deep recent results on orthogonal polynomials. We are currently working on turning this probabilistic result into practical algorithms. For instance, efficient sampling of DPPs is indeed an important open question, to which most of your comments refer. Although this question is out of the scope of our paper, note however that our results do not depend on how you sample. Efficient sampling of DPPs, along with other natural computational questions, is actually the crux of an ANR grant we just got, so hopefully in a few years we can write a more detailed answer on this blog! We now answer some of your other points.

“one has to examine the conditions for the result to operate, from the support being within the unit hypercube,”
Any compactly supported measure would do, using dilations, for instance. Note that we don’t assume the support is the whole hypercube.

“to the existence of N orthogonal polynomials wrt the dominating measure, not discussed here”
As explained in Section 2.1.2, it is enough that the reference measure charges some open set of the hypercube, which is for instance the case if it has a density with respect to the Lebesgue measure.

“to the lack of relation between the point process and the integrand,”
Actually, our method depends heavily on the target measure μ. Unlike vanilla QMC, the repulsiveness between the quadrature nodes is tailored to the integration problem.

“changing N requires a new simulation of the entire vector unless I missed the point.”
You’re absolutely right. This is a well-known open issue in probability, see the discussion on Terence Tao’s blog.

“This requires figuring out the upper bounds on the acceptance ratios, a “problem-dependent” request that may prove impossible to implement”
We agree that in general this isn’t trivial. However, good bounds are available for all Jacobi polynomials, see Section 3.

“Even without this stumbling block, generating the N-sized sample for dimension d=N (why d=N, I wonder?)”
This is a misunderstanding: we do not say that d=N in any sense. We only say that sampling from a DPP using the algorithm of [Hough et al] requires the same number of operations as orthonormalizing N vectors of dimension N, hence the cubic cost.

1. “how does it relate to quasi-Monte Carlo?”
So far, the connection to QMC is only intuitive: both rely on well-spaced nodes, but using different mathematical tools.

2. “the marginals of the N-th order determinantal process are far from uniform (see Fig. 1), and seemingly concentrated on the boundaries”
This phenomenon is due to orthogonal polynomials. We are investigating more general constructions that give more flexibility.

3. “Is the variance of the resulting estimator (2.11) always finite?”
Yes. For instance, this follows from the inequality below (5.56) since ƒ(x)/K(x,x) is Lipschitz.

4. and 5. We are investigating concentration inequalities to answer these points.

6. “probabilistic numerics produce an epistemic assessment of uncertainty, contrary to the current proposal.”
A partial answer may be our Remark 2.12. You can interpret DPPs as putting a Gaussian process prior over ƒ and sequentially sampling from the posterior variance of the GP.

local kernel reduction for ABC

Posted in Books, pictures, Statistics, University life with tags , , , , , on September 14, 2016 by xi'an

“…construction of low dimensional summary statistics can be performed as in a black box…”

Today Zhou and Fukuzumi just arXived a paper that proposes a gradient-based dimension reduction for ABC summary statistics, in the spirit of RKHS kernels as advocated, e.g., by Arthur Gretton. Here the projection is a mere linear projection Bs of the vector of summary statistics, s, where B is an estimated Hessian matrix associated with the posterior expectation E[θ|s]. (There is some connection with the latest version of Li’s and Fearnhead’s paper on ABC convergence as they also define a linear projection of the summary statistics, based on asymptotic arguments, although their matrix does depend on the true value of the parameter.) The linearity sounds like a strong restriction [to me] especially when the summary statistics have no reason to belong to a vectorial space and thus be open to changes of bases and linear projections. For instance, a specific value taken by a summary statistic, like 0 say, may be more relevant than the range of their values. On a larger scale, I am doubtful about always projecting a vector of summary statistics on a subspace with the smallest possible dimension, ie the dimension of θ. In practical settings, it seems impossible to derive the optimal projection and a subvector is almost certain to loose information against a larger vector.

“Another proposal is to use different summary statistics for different parameters.”

Which is exactly what we did in our random forest estimation paper. Using a different forest for each parameter of interest (but no real tree was damaged in the experiment!).

Assistant Professor position @ WU

Posted in Mountains, Statistics, Travel, University life, Wines with tags , , , , , , , on August 15, 2016 by xi'an

wien2There is an opening for an assistant professor non-tenure position in Vienna, WU, in Sylvia Früwirth-Schnatter’s group. With deadline September 7, 2016. The requested profile is

– PhD in applied mathematics or in statistics with a strong mathematical background
– Enthusiastic interest in research in Bayesian statistics, exemplified through publications in international journals in topics including, but not limited to, Bayesian non-parametric methods, Bayesian inference for high-dimensional and complex data, Bayesian time series analysis and state space modelling, efficient Markov chain Monte Carlo methods
– Interest in applications in economics, finance, and business
– Excellent programming skills (e.g. in R or Matlab)
– German language skills are not a prerequisite

Here are the details for those interested in this exciting opportunity!

Validity and the foundations of statistical inference

Posted in Statistics with tags , , , , , , , , on July 29, 2016 by xi'an

Natesh pointed out to me this recent arXival with a somewhat grandiose abstract:

In this paper, we argue that the primary goal of the foundations of statistics is to provide data analysts with a set of guiding principles that are guaranteed to lead to valid statistical inference. This leads to two new questions: “what is valid statistical inference?” and “do existing methods achieve this?” Towards answering these questions, this paper makes three contributions. First, we express statistical inference as a process of converting observations into degrees of belief, and we give a clear mathematical definition of what it means for statistical inference to be valid. Second, we evaluate existing approaches Bayesian and frequentist approaches relative to this definition and conclude that, in general, these fail to provide valid statistical inference. This motivates a new way of thinking, and our third contribution is a demonstration that the inferential model framework meets the proposed criteria for valid and prior-free statistical inference, thereby solving perhaps the most important unsolved problem in statistics.

Since solving the “most important unsolved problem in statistics” sounds worth pursuing, I went and checked the paper‘s contents.

“To us, the primary goal of the foundations of statistics is to provide a set of guiding principles that, if followed, will guarantee validity of the resulting inference. Our motivation for writing this paper is to be clear about what is meant by valid inference and to provide the necessary principles to help data analysts achieve validity.”

Which can be interpreted in so many ways that it is somewhat meaningless…

“…if real subjective prior information is available, we recommend using it. However, there is an expanding collection of work (e.g., machine learning, etc) that takes the perspective that no real prior information is available. Even a large part of the literature claiming to be Bayesian has abandoned the interpretation of the prior as a serious part of the model, opting for “default” prior that “works.” Our choice to omit a prior from the model is not for the (misleading) purpose of being “objective”—subjectivity is necessary—but, rather, for the purpose of exploring what can be done in cases where a fully satisfactory prior is not available, to see what improvements can be made over the status quo.”

This is a pretty traditional criticism of the Bayesian approach, namely that if a “true” prior is provided (by whom?) then it is optimal to use it. But this amounts to turn the prior into another piece of the sampling distribution and is not in my opinion a Bayesian argument! Most of the criticisms in the paper are directed at objective Bayes approaches, with the surprising conclusion that, because there exist cases where no matching prior is available, “the objective Bayesian approach [cannot] be considered as a general framework for scientific inference.” (p.9)

Another section argues that a Bayesian modelling cannot describe a state of total ignorance. This is formally correct, which is why there is no such thing as a non-informative or the non-informative prior, as often discussed here, but is this truly relevant, in that the inference problem contains one way or another information about the parameter, for instance through a loss function or a pseudo-likelihood.

“This is a desirable property that most existing methods lack.”

The proposal central to the paper thesis is to replace posterior probabilities by belief functions b(.|X), called statistical inference, that are interpreted as measures of evidence about subsets A of the parameter space. If not necessarily as probabilities. This is not very novel, witness the works of Dempster, Shafer and subsequent researchers. And not very much used outside Bayesian and fiducial statistics because of the mostly impossible task of defining a function over all subsets of the parameter space. Because of the subjectivity of such “beliefs”, they will be “valid” only if they are well-calibrated in the sense of b(A|X) being sub-uniform, that is, more concentrated near zero than a uniform variate (i.e., small) under the alternative, i.e. when θ is not in A. At this stage, since this is a mix of a minimax and proper coverage condition, my interest started to quickly wane… Especially because the sub-uniformity condition is highly demanding, if leading to controls over the Type I error and the frequentist coverage. As often, I wonder at the meaning of a calibration property obtained over all realisations of the random variable and all values of the parameter. So for me stability is neither “desirable” nor “essential”. Overall, I have increasing difficulties in perceiving proper coverage as a relevant property. Which has no stronger or weaker meaning that the coverage derived from a Bayesian construction.

“…frequentism does not provide any guidance for selecting a particular rule or procedure.”

I agree with this assessment, which means that there is no such thing as frequentist inference, but rather a philosophy for assessing procedures. That the Gleser-Hwang paradox invalidates this philosophy sounds a bit excessive, however. Especially when the bounded nature of Bayesian credible intervals is also analysed as a failure. A more relevant criticism is the lack of directives for picking procedures.

“…we are the first to recognize that the belief function’s properties are necessary in order for the inferential output to satisfy the required validity property”

The construction of the “inferential model” proposed by the authors offers similarities withn fiducial inference, in that it builds upon the representation of the observable X as X=a(θ,U). With further constraints on the function a() to ensure the validity condition holds… An interesting point is that the functional connection X=a(θ,U) means that the nature of U changes once X is observed, albeit in a delicate manner outside a Bayesian framework. When illustrated on the Gleser-Hwang paradox, the resolution proceeds from an arbitrary choice of a one-dimensional summary, though. (As I am reading the paper, I realise it builds on other and earlier papers by the authors, papers that I cannot read for lack of time. I must have listned to a talk by one of the authors last year at JSM as this rings a bell. Somewhat.) In conclusion of a quick Sunday afternoon read, I am not convinced by the arguments in the paper and even less by the impression of a remaining arbitrariness in setting the resulting procedure.

asymptotic properties of Approximate Bayesian Computation

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , on July 26, 2016 by xi'an

Street light near the St Kilda Road bridge, Melbourne, July 21, 2012With David Frazier and Gael Martin from Monash University, and with Judith Rousseau (Paris-Dauphine), we have now completed and arXived a paper entitled Asymptotic Properties of Approximate Bayesian Computation. This paper undertakes a fairly complete study of the large sample properties of ABC under weak regularity conditions. We produce therein sufficient conditions for posterior concentration, asymptotic normality of the ABC posterior estimate, and asymptotic normality of the ABC posterior mean. Moreover, those (theoretical) results are of significant import for practitioners of ABC as they pertain to the choice of tolerance ε used within ABC for selecting parameter draws. In particular, they [the results] contradict the conventional ABC wisdom that this tolerance should always be taken as small as the computing budget allows.

Now, this paper bears some similarities with our earlier paper on the consistency of ABC, written with David and Gael. As it happens, the paper was rejected after submission and I then discussed it in an internal seminar in Paris-Dauphine, with Judith taking part in the discussion and quickly suggesting some alternative approach that is now central to the current paper. The previous version analysed Bayesian consistency of ABC under specific uniformity conditions on the summary statistics used within ABC. But conditions for consistency are now much weaker conditions than earlier, thanks to Judith’s input!

There are also similarities with Li and Fearnhead (2015). Previously discussed here. However, while similar in spirit, the results contained in the two papers strongly differ on several fronts:

  1. Li and Fearnhead (2015) considers an ABC algorithm based on kernel smoothing, whereas our interest is the original ABC accept-reject and its many derivatives
  2. our theoretical approach permits a complete study of the asymptotic properties of ABC, posterior concentration, asymptotic normality of ABC posteriors, and asymptotic normality of the ABC posterior mean, whereas Li and Fearnhead (2015) is only concerned with asymptotic normality of the ABC posterior mean estimator (and various related point estimators);
  3. the results of Li and Fearnhead (2015) are derived under very strict uniformity and continuity/differentiability conditions, which bear a strong resemblance to those conditions in Yuan and Clark (2004) and Creel et al. (2015), while the result herein do not rely on such conditions and only assume very weak regularity conditions on the summaries statistics themselves; this difference allows us to characterise the behaviour of ABC in situations not covered by the approach taken in Li and Fearnhead (2015);