**H**ere is a short video featuring Mark Girolami (Warwick) explaining how to use signal processing and Bayesian statistics to estimate how many bats there are in a dark cave:

an attempt at bloggin, nothing more…

**H**ere is a short video featuring Mark Girolami (Warwick) explaining how to use signal processing and Bayesian statistics to estimate how many bats there are in a dark cave:

**B**efore leaving Helsinki, we arXived [from the Air France lounge!] the paper Jean-Michel presented on Monday at ABCruise in Helsinki. This paper summarises the experiments Louis conducted over the past months to assess the great performances of a random forest regression approach to ABC parameter inference. Thus validating in this experimental sense the use of this new approach to conducting ABC for Bayesian inference by random forests. (And not ABC model choice as in the Bioinformatics paper with Pierre Pudlo and others.)

I think the major incentives in exploiting the (still mysterious) tool of random forests [against more traditional ABC approaches like Fearnhead and Prangle (2012) on summary selection] are that (i) forests do not require a preliminary selection of the summary statistics, since an arbitrary number of summaries can be used as input for the random forest, even when including a large number of useless white noise variables; (b) there is no longer a tolerance level involved in the process, since the many trees in the random forest define a natural if rudimentary distance that corresponds to being or not being in the same leaf as the observed vector of summary statistics η(y); (c) the size of the reference table simulated from the prior (predictive) distribution does not need to be as large as for in usual ABC settings and hence this approach leads to significant gains in computing time since the production of the reference table usually is the costly part! To the point that deriving a different forest for each univariate transform of interest is truly a minor drag in the overall computing cost of the approach.

An intriguing point we uncovered through Louis’ experiments is that an unusual version of the variance estimator is preferable to the standard estimator: we indeed exposed better estimation performances when using a weighted version of the out-of-bag residuals (which are computed as the differences between the simulated value of the parameter transforms and their expectation obtained by removing the random trees involving this simulated value). Another intriguing feature [to me] is that the regression weights as proposed by Meinshausen (2006) are obtained as an average of the inverse of the number of terms in the leaf of interest. When estimating the posterior expectation of a transform h(θ) given the observed η(y), this summary statistic η(y) ends up in a given leaf for each tree in the forest and all that matters for computing the weight is the number of points from the reference table ending up in this very leaf. I do find this difficult to explain when confronting the case when many simulated points are in the leaf against the case when a single simulated point makes the leaf. This single point ends up being much more influential that all the points in the other situation… While being an outlier of sorts against the prior simulation. But now that I think more about it (after an expensive Lapin Kulta beer in the Helsinki airport while waiting for a change of tire on our airplane!), it somewhat makes sense that rare simulations that agree with the data should be weighted much more than values that stem from the prior simulations and hence do not translate much of an information brought by the observation. (If this sounds murky, blame the beer.) What I found great about this new approach is that it produces a non-parametric evaluation of the cdf of the quantity of interest h(θ) at no calibration cost or hardly any. (An R package is in the making, to be added to the existing R functions of abcrf we developed for the ABC model choice paper.)

**I** have spent the day and more completing and compiling slides for my contrapuntal perspective on probabilistic numerics, back in Montréal, for the NIPS 2015 workshop of December 11 on this theme. As I presume the kind invitation by the organisers was connected with my somewhat critical posts on the topic, I mostly The day after, while I am flying back to London for the CFE (Computational and Financial Econometrics) workshop, somewhat reluctantly as there will be another NIPS workshop that day on scalable Monte Carlo.

Je veux revoir le long désert

Des rues qui n’en finissent pas

Qui vont jusqu’au bout de l’hiver

Sans qu’il y ait trace de pas

**K**eli Liu and Xiao-Li Meng completed a paper on the very nature of inference, to appear in The Annual Review of Statistics and Its Application. This paper or chapter is addressing a fundamental (and foundational) question on drawing inference based a sample on a new observation. That is, in making prediction. To what extent should the characteristics of the sample used for that prediction resemble those of the future observation? In his 1921 book, *A Treatise on Probability*, Keynes thought this similarity (or individualisation) should be pushed to its extreme, which led him to somewhat conclude on the impossibility of statistics and never to return to the field again. Certainly missing the incoming possibility of comparing models and selecting variables. And not building so much on the “all models are wrong” tenet. On the contrary, classical statistics use the entire data available and the associated model to run the prediction, including Bayesian statistics, although it is less clear how to distinguish between data and control there. Liu & Meng debate about the possibility of creating controls from the data alone. Or “alone” as the model behind always plays a capital role.

“Bayes and Frequentism are two ends of the same spectrum—a spectrum defined in terms of relevance and robustness. The nominal contrast between them (…) is a red herring.”

The paper makes for an exhilarating if definitely challenging read. With a highly witty writing style. If only because the perspective is unusual, to say the least!, and requires constant mental contortions to frame the assertions into more traditional terms. For instance, I first thought that Bayesian procedures were in agreement with the ultimate conditioning approach, since it conditions on the observables and nothing else (except for the model!). Upon reflection, I am not so convinced that there is such a difference with the frequentist approach in the (specific) sense that they both take advantage of the entire dataset. Either from the predictive or from the plug-in distribution. It all boils down to how one defines “control”.

“Probability and randomness, so tightly yoked in our minds, are in fact distinct concepts (…) at the end of the day, probability is essentially a tool for bookkeeping, just like the abacus.”

Some sentences from the paper made me think of ABC, even though I am not trying to bring everything back to ABC!, as drawing controls is the nature of the ABC game. ABC draws samples or control from the prior predictive and only keeps those for which the relevant aspects (or the summary statistics) agree with those of the observed data. Which opens similar questions about the validity and precision of the resulting inference, as well as the loss of information due to the projection over the summary statistics. While ABC is not mentioned in the paper, it can be used as a benchmark to walk through it.

“In the words of Jack Kiefer, we need to distinguish those problems with `luck data’ from those with `unlucky data’.”

I liked very much recalling discussions we had with George Casella and Costas Goutis in Cornell about frequentist conditional inference, with the memory of Jack Kiefer still lingering around. However, I am not so excited about the processing of models here since, from what I understand in the paper (!), the probabilistic model behind the statistical analysis must be used to some extent in producing the control case and thus cannot be truly assessed with a critical eye. For instance, of which use is the mean square error when the model behind is unable to produce the observed data? In particular, the variability of this mean squared error is directly driven by this model. Similarly the notion of ancillaries is completely model-dependent. In the classification diagrams opposing robustness to relevance, all methods included therein are parametric. While non-parametric types of inference could provide a reference or a calibration ruler, at the very least.

Also, by continuously and maybe a wee bit heavily referring to the doctor-and-patient analogy, the paper is somewhat confusing as to which parts are analogy and which parts are methodology and to which type of statistical problem is covered by the discussion (sometimes it feels like all problems and sometimes like medical trials).

“The need to deliver individualized assessments of uncertainty are more pressing than ever.”

A final question leads us to an infinite regress: if the statistician needs to turn to individualized inference, at which level of individuality should the statistician be assessed? And who is going to provide the controls then? In any case, this challenging paper is definitely worth reading by (only mature?) statisticians to ponder about the nature of the game!

“Recently, El Moselhy et al. proposed a method to construct a map that pushed forward the prior measure to the posterior measure, casting Bayesian inference as an optimal transport problem. Namely, the constructed map transforms a random variable distributed according to the prior into another random variable distributed according to the posterior. This approach is conceptually different from previous methods, including sampling and approximation methods.”

**Y**esterday, Kim et al. arXived a paper with the above title, linking transport theory with Bayesian inference. Rather strangely, they motivate the transport theory with Galton’s quincunx, when the apparatus is a discrete version of the inverse cdf transform… Of course, in higher dimensions, there is no longer a straightforward transform and the paper shows (or recalls) that there exists a unique solution with positive Jacobian for log-concave posteriors. For instance, log-concave priors and likelihoods. This solution remains however a virtual notion in practice and an approximation is constructed via a (finite) functional polynomial basis. And minimising an empirical version of the Kullback-Leibler distance.

I am somewhat uncertain as to how and why apply such a transform to simulations from the prior (which thus has to be proper). Producing simulations from the posterior certainly is a traditional way to approximate Bayesian inference and this is thus one approach to this simulation. However, the discussion of the advantage of this approach over, say, MCMC, is quite limited. There is no comparison with alternative simulation or non-simulation methods and the computing time for the transport function derivation. And on the impact of the dimension of the parameter space on the computing time. In connection with recent discussions on probabilistic numerics and super-optimal convergence rates, Given that it relies on simulations, I doubt optimal transport can do better than O(√n) rates. One side remark about deriving posterior credible regions from (HPD) prior credible regions: there is no reason the resulting region is optimal in volume (HPD) given that the transform is non-linear.

**I** will be back in Montréal, as the song by Robert Charlebois goes, for the NIPS 2015 meeting there, more precisely for the workshops of December 11 and 12, 2015, on probabilistic numerics and ABC [à Montréal]. I was invited to give the first talk by the organisers of the NIPS workshop on probabilistic numerics, presumably to present a contrapuntal perspective on this mix of Bayesian inference with numerical issues, following my somewhat critical posts on the topic. And I also plan to attend some lectures in the (second) NIPS workshop on ABC methods. Which does not leave much free space for yet another workshop on Approximate Bayesian Inference! The day after, while I am flying back to London, there will be a workshop on scalable Monte Carlo. All workshops are calling for contributed papers to be presented during central poster sessions. To be submitted to abcinmontreal@gmail.com and to probnum@gmail.com and to aabi2015. Before October 16.

Funny enough, I got a joking email from Brad, bemoaning my traitorous participation to the workshop on probabilistic numerics because of its “anti-MCMC” agenda, reflected in the summary:

“Integration is the central numerical operation required for Bayesian machine learning (in the form of marginalization and conditioning). Sampling algorithms still abound in this area, although it has long been known that Monte Carlo methods are fundamentally sub-optimal. The challenges for the development of better performing integration methods are mostly algorithmic. Moreover, recent algorithms have begun to outperform MCMC and its siblings, in wall-clock time, on realistic problems from machine learning.

The workshop will review the existing, by now quite strong, theoretical case against the use of random numbers for integration, discuss recent algorithmic developments, relationships between conceptual approaches, and highlight central research challenges going forward.”

Position that I hope to water down in my talk! In any case,

Je veux revoir le long désert

Des rues qui n’en finissent pas

Qui vont jusqu’au bout de l’hiver

Sans qu’il y ait trace de pas

“The challenge in implementation of the Gibbs posterior is that it depends on an unspecified scale (or inverse temperature) parameter.”

**A** new paper by Nick Syring and Ryan Martin was arXived today on the same topic as the one I discussed last January. The setting is the same as with empirical likelihood, namely that the distribution of the data is not specified, while parameters of interest are defined via moments or, more generally, a minimising a loss function. A pseudo-likelihood can then be constructed as a substitute to the likelihood, in the spirit of Bissiri et al. (2013). It is called a “Gibbs posterior” distribution in this paper. So the “Gibbs” in the title has no link with the “Gibbs” in Gibbs sampler, since inference is conducted with respect to this pseudo-posterior. Somewhat logically (!), as n grows to infinity, the pseudo- posterior concentrates upon the pseudo-true value of θ minimising the expected loss, hence asymptotically resembles to the M-estimator associated with this criterion. As I pointed out in the discussion of Bissiri et al. (2013), one major hurdle when turning a loss into a log-likelihood is that it is at best defined up to a scale factor ω. The authors choose ω so that the Gibbs posterior

is well-calibrated. Where *l*_{n} is the empirical averaged loss. So the Gibbs posterior is part of the matching prior collection. In practice the authors calibrate ω by a stochastic optimisation iterative process, with bootstrap on the side to evaluate coverage. They briefly consider empirical likelihood as an alternative, on a median regression example, where they show that their “Gibbs confidence intervals (…) are clearly the best” (p.12). Apart from the relevance of being “well-calibrated”, and the asymptotic nature of the results. and the dependence on the parameterisation via the loss function, one may also question the possibility of using this approach in large dimensional cases where all of or none of the parameters are of interest.