**A**nd thus I am back in Montréal, for MCM 2017, located in HEC Montréal, on the campus of Université de Montréal, for three days. My talk is predictably about ABC, what else?!, gathering diverse threads from different talks and papers:

## Archive for Bayesian model choice

## MCM 2017

Posted in Statistics with tags ABC, ABC algorithm, ABC consistency, Bayesian model choice, curse of dimensionality, Hilbert curve, MCM 2017, Montréal, population genetics, Québec, random forests, summary statistics, Wasserstein distance on July 3, 2017 by xi'an## a typo that went under the radar

Posted in Books, R, Statistics, University life with tags Bayesian Core, Bayesian Essentials with R, Bayesian model choice, cross validated, Jean-Michel Marin, model posterior probabilities, R, typos on January 25, 2017 by xi'an**A** chance occurrence on X validated: a question on an incomprehensible formula for Bayesian model choice: which, most unfortunately!, appeared in Bayesian Essentials with R! Eeech! It looks like one line in our *L ^{A}T_{E}X* file got erased and the likelihood part in the denominator altogether vanished. Apologies to all readers confused by this nonsensical formula!

## ISBA 2016 [#4]

Posted in pictures, Running, Statistics, Travel with tags ABC, Arnold Zellner, Bayes factors, Bayesian model choice, consistency, Italy, Monte Carlo Statistical Methods, pseudo-random generator, random forests, Santa Margherita di Pula, Sardinia on June 17, 2016 by xi'an**A**s an organiser of the ABC session (along with Paul Fearnhead), I was already aware of most results behind the talks, but nonetheless got some new perspectives from the presentations. Ewan Cameron discussed a two-stage ABC where the first step is actually an indirect inference inference, which leads to a more efficient ABC step. With applications to epidemiology. Lu presented extensions of his work with Paul Fearnhead, incorporating regression correction à la Beaumont to demonstrate consistency and using defensive sampling to control importance sampling variance. (While we are working on a similar approach, I do not want to comment on the consistency part, but I missed how defensive sampling can operate in complex ABC settings, as it requires advanced knowledge on the target to be effective.) And Ted Meeds spoke about two directions for automatising ABC (as in the ABcruise), from incorporating the pseudo-random generator into the representation of the ABC target, to calling for deep learning advances. The inclusion of random generators in the transform is great, provided they can remain black boxes as otherwise they require recoding. (This differs from quasi-Monte Carlo ABC, which aims at reducing the variability due to sheer noise.) It took me a little while, but I eventually understood why Jan Haning saw this inclusion as a return to fiducial inference!

Merlise Clyde gave a wide-ranging plenary talk on (linear) model selection that looked at a large range of priors under the hat of generalised confluent hypergeometric priors over the mixing scale in Zellner’s g-prior. Some were consistent under one or both models, maybe even for misspecified models. Some parts paralleled my own talk on the foundations of Bayesian tests, no wonder since I mostly give a review before launching into a criticism of the Bayes factor. Since I think this may be a more productive perspective than trying to over-come the shortcomings of Bayes factors in weakly informative settings. Some comments at the end of Merlise’s talk were loosely connected to this view in that they called for an unitarian perspective [rather than adapting a prior to a specific inference problem] with decision-theoretic backup. Conveniently the next session was about priors and testing, obviously connected!, with Leo Knorr-Held considering g-priors for the Cox model, Kerrie Mengersen discussing priors for over-fitted mixtures and HMMs, and Dan Simpson entertaining us with his quest of a prior for a point process, eventually reaching PC priors.

## read paper [in Bristol]

Posted in Books, pictures, Statistics, Travel, University life with tags Bayes factors, Bayesian hypothesis testing, Bayesian model choice, Bristol, cake, England, improper priors, mixtures of distributions, Neyman-Pearson, non-informative priors, parametrisation, Pima Indians, Read paper, seminar, University of Bristol on January 29, 2016 by xi'an**I** went to give a seminar in Bristol last Friday and I chose to present the testing with mixture paper. As we are busy working on the revision, I was eagerly looking for comments and criticisms that could strengthen this new version. As it happened, the (Bristol) Bayesian Cake (Reading) Club had chosen our paper for discussion, two weeks in a row!, hence the title!, and I got invited to join the group the morning prior to the seminar! This was, of course, most enjoyable and relaxed, including an home-made cake!, but also quite helpful in assessing our arguments in the paper. One point of contention or at least of discussion was the common parametrisation between the components of the mixture. Although all parametrisations are equivalent from a *single* component point of view, I can [almost] see why using a mixture with the same parameter value on all components may impose some unsuspected constraint on that parameter. Even when the parameter is *the same moment* for both components. This still sounds like a minor counterpoint in that the weight should converge to either zero or one and hence eventually favour the posterior on the parameter corresponding to the “true” model.

Another point that was raised during the discussion is the behaviour of the method under misspecification or for an M-open framework: when neither model is correct does the weight still converge to the boundary associated with the closest model (as I believe) or does a convexity argument produce a non-zero weight as it limit (as hinted by one example in the paper)? I had thought very little about this and hence had just as little to argue though as this does not sound to me like the primary reason for conducting tests. Especially in a Bayesian framework. If one is uncertain about both models to be compared, one should have an alternative at the ready! Or use a non-parametric version, which is a direction we need to explore deeper before deciding it is coherent and convergent!

A third point of discussion was my argument that mixtures allow us to rely on the same parameter and hence the same prior, whether proper or not, while Bayes factors are less clearly open to this interpretation. This was not uniformly accepted!

Thinking afresh about this approach also led me to broaden my perspective on the use of the posterior distribution of the weight(s) α: while previously I had taken those weights mostly as a proxy to the posterior probabilities, to be calibrated by pseudo-data experiments, as for instance in Figure 9, I now perceive them primarily as the portion of the data in agreement with the corresponding model [or hypothesis] and more importantly as a solution for staying away from a Neyman-Pearson-like decision. Or error evaluation. Usually, when asked about the interpretation of the output, my answer is to compare the behaviour of the posterior on the weight(s) with a posterior associated with a sample from each model. Which does sound somewhat similar to posterior predictives if the samples are simulated from the associated predictives. But the issue was not raised during the visit to Bristol, which possibly reflects on how unfrequentist the audience was [the Statistics group is], as it apparently accepted with no further ado the use of a posterior distribution as a soft assessment of the comparative fits of the different models. If not necessarily agreeing the need of conducting hypothesis testing (especially in the case of the Pima Indian dataset!).

## zurück in Wien

Posted in Books, pictures, Statistics, Travel, University life, Wines with tags ABC, Austria, Bayesian model choice, finite mixtures, handbook of mixture analysis, Monte Carlo Statistical Methods, random forests, Vienna, WU Wien on December 7, 2015 by xi'an**B**ack in Vienna after a little bit more than a year! The opportunity was a working meeting on a CRC Handbook of mixture analysis, Sylvia Früwirth-Schnatter, Gilles Celeux and myself are editing together, along with about twenty authors, half of which also came to Vienna for the weekend. Great opportunity to all work together, towards a more coherent and comprehensive volume, as well as to enjoy the earliest stages of the Viennese winter. Very mild winter so far. I also gave a seminar Friday morning, thinking until I saw the attached poster that I was going to speak on mixtures for testing..! Except for a few seconds of uncertainty on the second version of the random forest approach, I still managed to survive the switch (in a fabulous seminar room, overlooking the Prater…) The two days meeting was very rewarding, with major changes in the contents and the goals of many chapters, including those I am contributing to.

## projection predictive input variable selection

Posted in Books, Statistics, University life with tags Bayesian model choice, Cagliari, Costas Goutis, Gaussian processes, kernel, prior projection, variable selection on November 2, 2015 by xi'an**J**uho Piironen and Aki Vehtari just arXived a paper on variable selection that relates to two projection papers we wrote in the 1990’s with Costas Goutis (who died near Seattle in a diving accident on July 1996) and Jérôme Dupuis… Except that they move to the functional space of Gaussian processes. The covariance function in a Gaussian process is indeed based on a distance between observations, which are themselves defined as a vector of inputs. Some of which matter and some of which do not matter in the kernel value. When rescaling the distance with “length-scales” for all variables, one could think that non-significant variates have very small scales and hence bypass the need for variable selection but this is not the case as those coefficients react poorly to non-linearities in the variates… The paper thus builds a projective structure from a reference model involving all input variables.

“…adding some irrelevant inputs is not disastrous if the model contains a sparsifying prior structure, and therefore, one can expect to lose less by using all the inputs than by trying to differentiate between the relevant and irrelevant ones and ignoring the uncertainty related to the left-out inputs.”

While I of course appreciate this avatar to our original idea (with some borrowing from McCulloch and Rossi, 1992), the paper reminds me of some of the discussions and doubts we had about the role of the reference or super model that “anchors” the projections, as there is no reason for that reference model to be a better one. It could be that an iterative process where the selected submodel becomes the reference for the next iteration could enjoy better performances. When I first presented this work in Cagliari, in the late 1990s, one comment was that the method had no theoretical guarantee like consistency. Which is correct if the minimum distance is not evolving (how quickly?!) with the sample size n. I also remember the difficulty Jérôme and I had in figuring out a manageable forward-backward exploration of the (huge) set of acceptable subsets of variables. Random walk exploration and RJMCMC are unlikely to solve this problem.

## model selection and multiple testing

Posted in Books, pictures, Statistics, Travel, University life with tags AIC, Bayes factor, Bayesian hypothesis testing, Bayesian model choice, Biarritz, BIC, Bordeaux, consistency, DIC, empirical Bayes, Hourtain, Madrid, pseudo-priors, The Bayesian Choice on October 23, 2015 by xi'an

**R**itabrata Dutta, Malgorzata Bogdan and Jayanta Ghosh recently arXived a survey paper on model selection and multiple testing. Which provides a good opportunity to reflect upon traditional Bayesian approaches to model choice. And potential alternatives. On my way back from Madrid, where I got a bit distracted when flying over the South-West French coast, from Biarritz to Bordeaux. Spotting the lake of Hourtain, where I spent my military training month, 29 years ago!

“On the basis of comparison of AIC and BIC, we suggest tentatively that model selection rules should be used for the purpose for which they were introduced. If they are used for other problems, a fresh justification is desirable. In one case, justification may take the form of a consistency theorem, in the other some sort of oracle inequality. Both may be hard to prove. Then one should have substantial numerical assessment over many different examples.”

The authors quickly replace the Bayes factor with BIC, because it is typically consistent. In the comparison between AIC and BIC they mention the connundrum of defining a prior on a nested model from the prior on the nesting model, a problem that has not been properly solved in my opinion. The above quote with its call to a large simulation study reminded me of the paper by Arnold & Loeppky about running such studies through ecdfs. That I did not see as solving the issue. The authors also discuss DIC and Lasso, without making much of a connection between those, or with the above. And then reach the parametric empirical Bayes approach to model selection exemplified by Ed George’s and Don Foster’s 2000 paper. Which achieves asymptotic optimality for posterior prediction loss (p.9). And which unifies a wide range of model selection approaches.

A second part of the survey considers the large p setting, where BIC is not a good approximation to the Bayes factor (when testing whether or not all mean entries are zero). And recalls that there are priors ensuring consistency for the Bayes factor in this very [restrictive] case. Then, in Section 4, the authors move to what they call “cross-validatory Bayes factors”, also known as partial Bayes factors and pseudo-Bayes factors, where the data is split to (a) make the improper prior proper and (b) run the comparison or test on the remaining data. They also show the surprising result that, provided the fraction of the data used to proper-ise the prior does not converge to one, the X validated Bayes factor remains consistent [for the special case above]. The last part of the paper concentrates on multiple testing but is more tentative and conjecturing about convergence results, centring on the differences between full Bayes and empirical Bayes. Then the plane landed in Paris and I stopped my reading, not feeling differently about the topic than when the plane started from Madrid.