**L**uke Bornn, Neal Shephard and Reza Solgi have recently arXived a research report on non-parametric Bayesian quantiles. This work relates to their earlier paper that combines Bayesian inference with moment estimators, in that the quantiles do not define entirely the distribution of the data, which then needs to be completed by Bayesian means. But contrary to this previous paper, it does not require MCMC simulation for distributions defined on a variety as, e.g., a curve.

Here a *quantile* is defined as minimising an asymmetric absolute risk, i.e., an expected loss. It is therefore a deterministic function of the model parameters for a parametric model and a functional of the model otherwise. And connected to a moment if not a moment *per se*. In the case of a model with a discrete support, the unconstrained model is parameterised by the probability vector θ and β=t(θ). However, the authors study the opposite approach, namely to set a prior on β, p(β), and then complement this prior with a conditional prior on θ, p(θ|β), the joint prior p(β)p(θ|β) being also the marginal p(θ) because of the deterministic relation. However, I am getting slightly lost in the motivation for the derivation of the conditional when the authors pick an arbitrary prior on θ and use it to derive a conditional on β which, along with an arbitrary (“scientific”) prior on β defines a new prior on θ. This works out in the discrete case because β has a finite support. But it is unclear (to me) why it should work in the continuous case [not covered in the paper].

Getting back to the central idea of defining first the distribution on the quantile β, a further motivation is provided in the hierarchical extension of Section 3, where the same quantile distribution is shared by all individuals (e.g., cricket players) in the population, while the underlying distributions for the individuals are otherwise disconnected and unconstrained. (Obviously, a part of the cricket example went far above my head. But one may always idly wonder why all players should share the same distribution. And about what would happen when imposing no quantile constraint but picking instead a direct hierarchical modelling on the θ’s.) This common distribution on β can then be modelled by a Dirichlet hyperprior.

**T**he paper also contains a section on estimating the entire quantile function, which is a wee paradox in that this function is again a deterministic transform of the original parameter θ, but that the authors use instead pointwise estimation, i.e., for each level τ. I find the exercise furthermore paradoxical in that the hierarchical modelling with a common distribution on the quantile β(τ) only is repeated for each τ but separately, while it should be that the entire parameter should share a common distribution. Given the equivalence between the quantile function and the entire parameter θ.