## Conditional love [guest post]

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , on August 4, 2015 by xi'an

[When Dan Simpson told me he was reading Terenin’s and Draper’s latest arXival in a nice Bath pub—and not a nice bath tub!—, I asked him for a blog entry and he agreed. Here is his piece, read at your own risk! If you remember to skip the part about Céline Dion, you should enjoy it very much!!!]

Probability has traditionally been described, as per Kolmogorov and his ardent follower Katy Perry, unconditionally. This is, of course, excellent for those of us who really like measure theory, as the maths is identical. Unfortunately mathematical convenience is not necessarily enough and a large part of the applied statistical community is working with Bayesian methods. These are unavoidably conditional and, as such, it is natural to ask if there is a fundamentally conditional basis for probability.

Bruno de Finetti—and later Richard Cox and Edwin Jaynes—considered conditional bases for Bayesian probability that are, unfortunately, incomplete. The critical problem is that they mainly consider finite state spaces and construct finitely additive systems of conditional probability. For a variety of reasons, neither of these restrictions hold much truck in the modern world of statistics.

In a recently arXiv’d paper, Alexander Terenin and David Draper devise a set of axioms that make the Cox-Jaynes system of conditional probability rigorous. Furthermore, they show that the complete set of Kolmogorov axioms (including countable additivity) can be derived as theorems from their axioms by conditioning on the entire sample space.

This is a deep and fundamental paper, which unfortunately means that I most probably do not grasp it’s complexities (especially as, for some reason, I keep reading it in pubs!). However I’m going to have a shot at having some thoughts on it, because I feel like it’s the sort of paper one should have thoughts on. Continue reading

## Advances in scalable Bayesian computation [day #4]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , , , , , , , , , on March 7, 2014 by xi'an

Final day of our workshop Advances in Scalable Bayesian Computation already, since tomorrow morning is an open research time ½ day! Another “perfect day in paradise”, with the Banff Centre campus covered by a fine snow blanket, still falling…, and making work in an office of BIRS a dream-like moment.

Still looking for a daily theme, parallelisation could be the right candidate, even though other talks this week went into parallelisation issues, incl. Steve’s talk yesterday. Indeed, Anthony Lee gave a talk this morning on interactive sequential Monte Carlo, where he motivated the setting by a formal parallel structure. Then, Darren Wilkinson surveyed the parallelisation issues in Monte Carlo, MCMC, SMC and ABC settings, before arguing in favour of a functional language called Scala. (Neat entries to those topics can be found on Darren’s blog.) And in the afternoon session, Sylvia Frühwirth-Schnatter exposed her approach to the (embarrassingly) parallel problem, in the spirit of Steve’s , David Dunson’s and Scott’s (a paper posted on the day I arrived in Chamonix and hence I missed!). There was plenty to learn from that talk (do not miss the Yin-Yang moment at 25 mn!), but it also helped me to break a difficulty I had with the consensus Bayes representation for two weeks (more on that later!). And, even though Marc Suchard mostly talked about flu and trees in a very pleasant and broad talk, he also had a slide on parallelisation to fit the theme! Although unrelated with parallelism,  Nicolas Chopin’s talk was on sequential quasi-Monte Carlo algorithms: while I had heard previous versions of this talk in Chamonix and BigMC, I found it full of exciting stuff. And it clearly got the room truly puzzled by this possibility, in a positive way! Similarly, Alex Lenkoski spoke about extreme rain events in Norway with no trace of parallelism, but the general idea behind the examples was to question the notion of the calibrated Bayesian (with possible connections with the cut models).

This has been a wonderful week and I am sure the participants got as much as I did from the talks and the informal exchanges. Thanks to BIRS for the sponsorship and the superb organisation of the week (and to the Banff Centre for providing such a paradisical environment). I feel very privileged to have benefited from this support, even though I deadly hope to be back in Banff within a few years.

## Advances in scalable Bayesian computation [day #3]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , , on March 6, 2014 by xi'an

We have now gone over the midpoint of our workshop Advances in Scalable Bayesian Computation with three talks in the morning and an open research or open air afternoon. (Maybe surprisingly I chose to stay indoors and work on a new research topic rather than trying cross-country skiing!) If I must give a theme for the day, it would be (jokingly) corporate Big data, as the three speakers spoke of problems and solutions connected with Google, Facebook and similar companies. First, Russ Salakhutdinov presented some  hierarchical structures on multimedia data, like connecting images and text, with obvious applications on Google. The first part described Boltzman machines with impressive posterior simulations of characters and images. (Check the video at 45:00.) Then Steve Scott gave us a Google motivated entry to embarrassingly parallel algorithms, along the lines of papers recently discussed on the ‘Og. (Too bad we forgot to start the video at the very beginning!) One of the novel things in the talk (for me) was the inclusion of BART in this framework, with the interesting feature that using the whole prior on each machine was way better than using a fraction of the prior, as predicted by the theory! And Joaquin Quinonero Candela provided examples of machine learning techniques used by Facebook to suggest friends and ads in a most efficient way (techniques remaining hidden!).

Even though the rest of the day was free, the two hours of exercising between the pool in the early morning and the climbing wall in the late afternoon left me with no energy to experiment curling with a large subsample of the conference attendees, much to my sorrow!

## Advances in scalable Bayesian computation [day #2]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , , , on March 5, 2014 by xi'an

And here is the second day of our workshop Advances in Scalable Bayesian Computation gone! This time, it sounded like the “main” theme was about brains… In fact, Simon Barthelmé‘s research originated from neurosciences, while Dawn Woodard dissected a brain (via MRI) during her talk! (Note that the BIRS website currently posts Simon’s video as being Dan Simpson’s talk, the late change in schedule being due to Dan most unfortunately losing his passport during a plane transfer and most unfortunately being prevented from attending…) I found Simon’s talk quite inspiring, with this Tibshirani et al.’s trick of using logistic regression to estimate densities as a classification problem central to the method and suggesting a completely different vista for handling normalising constants… Then Raazesh Sainudiin gave a detailed explanation and validation of his approach to density estimation by multidimensional pavings/histograms, with a tree representation allowing for fast merging of different estimators. Raaz had given a preliminary version of the talk at CREST last Fall, which helped with focussing on the statistical aspects of the method. Chris Strickland then exposed an image analysis of flooded Northern Queensland landscapes, using a spatio-temporal model with changepoints and about 18,000 parameters. still managing to get an efficiency of O(np) thanks to two tricks. Then it was time for the group photograph outside in a balmy -18⁰ and an open research time that was quite profitable.

In the afternoon sessions, Paul Fearnhead presented an auxiliary variable approach to particle Gibbs, which again opened new possibilities for handling state-space models, but also reminding me of Xiao-Li Meng’s reparameterisation devices. And making me wonder (out loud) whether or not the SMC algorithm was that essential in a static setting, since the sequence could be explored in any possible order for a fixed time horizon. Then Emily Fox gave a 2-for-1 talk, mostly focussing on the first talk, where she introduced a new technique for approximating the gradient in Hamiltonian (or Hockey!) Monte Carlo, using second order Langevin. She did not have much time for the second talk, which intersected with the one she gave at BNP’ski in Chamonix, but focussed on a notion of sandwiched slice sampling where the target density only needs bounds that can get improved if needed. A cool trick! And the talks ended with Dawn Woodard‘s analysis of time varying 3-D brain images towards lesion detection, through an efficient estimation of a spatial mixture of normals.

## Advances in scalable Bayesian computation [day #1]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , on March 4, 2014 by xi'an

This was the first day of our workshop Advances in Scalable Bayesian Computation and it sounded like the “main” theme was probabilistic programming, in tune with my book review posted this morning. Indeed, both Vikash Mansinghka and Frank Wood gave talks about this concept, Vikash detailing the specifics of a new programming language called Venture and Frank focussing on his state-space version of the above called Anglican. This is a version of the language Church, developed to handle probabilistic models and inference (hence the joke about Anglican, “a Church of England Venture’! But they could have also added that Frank Wood was also the name of a former archbishop of Melbourne..!) I alas had an involuntary doze during Vikash’s talk, which made it harder for me to assess the fundamentals of those ventures, of how they extended beyond a “mere” new software (and of why I would invest in learning a Lisp-based language!).

The other talks of Day #1 were of a more “classical” nature with Pierre Jacob explaining why non-negative unbiased estimators were impossible to provide in general, a paper I posted about a little while ago, and including an objective Bayes example that I found quite interesting. Then Sumeet Singh (no video) presented a joint work with Nicolas Chopin on the uniform ergodicity of the particle Gibbs sampler, a paper that I should have commented here (except that it appeared just prior to The Accident!), with a nice coupling proof. And Maria Lomeli gave us an introduction to the highly general Poisson-Kingman mixture models as random measures, which encompasses all of the previously studied non-parametric random measures, with an MCMC implementation that included a latent variable representation for the alpha-stable process behind the scene, representation that could be (and maybe is) also useful in parametric analyses of alpha-stable processes.

We also had an open discussion in the afternoon that ended up being quite exciting, with a few of us voicing out some problems or questions about existing methods and others making suggestions or contradictions. We are still a wee bit short of considering a collective paper on MCMC under constraints with coherent cross-validated variational Bayes and loss-based pseudo priors, with applications to basketball data” to appear by the end of the week!

Add to this two visits to the Sally Borden Recreation Centre for morning swimming and evening climbing, and it is no wonder I woke up a bit late this morning! Looking forward Day #2!

## snapshot from Budapest (EMS 20130 #1)

Posted in pictures, Running, Statistics, Travel, University life with tags , , , , on July 23, 2013 by xi'an

I had a nice “working” day in Budapest today, spending most of the time looking at Markov chain diagrams and Peskun orderings with Randal Douc, while drinking litres of  iced coffee, meaning I skipped a large part of the talks at EMS 2013 I am afraid… Thanks to the very early sunrise in Budapest (which is on the same time zone as Brest or even Porto!), I managed to have a long run along the Danube and a breakfast with my friends Gautami and Peter before the conference had even started. I still attended David Balding’s invited talk on DNA based evidence, containing an illustration in the Amanda knox case,  the Bayesian non-parametric session, which provided me with additional illustrations for The Talk, from Bernstein-von Mises to species estimation, then the computational biology session where Michael Stumpf showed us a masterly mix of stick breaking processes, Bayesian networks, hidden Markov models and genetics.  And… we managed to make considerable progress in this proof of ours!

## Michael Jordan’s course at CREST

Posted in Statistics, University life with tags , , , , , , , , on March 26, 2013 by xi'an

Next month, Michael Jordan will give an advanced course at CREST-ENSAE, Paris, on Recent Advances at the Interface of Computation and Statistics. The course will take place on April 4 (14:00, ENSAE, Room #11), 11 (14:00, ENSAE, Room #11), 15 (11:00, ENSAE, Room #11) and 18 (14:00, ENSAE, Room #11). It is open to everyone and attendance is free. The only constraint is a compulsory registration with Nadine Guedj (email: guedj[AT]ensae.fr) for security issues. I strongly advise all graduate students who can take advantage of this fantastic opportunity to grasp it! Here is the abstract to the course:

“I will discuss several recent developments in areas where statistical science meets computational science, with particular concern for bringing statistical inference into contact with distributed computing architectures and with recursive data structures :

1. How does one obtain confidence intervals in massive data sets? The bootstrap principle suggests resampling data to obtain fluctuations in the values of estimators, and thereby confidence intervals, but this is infeasible computationally with massive data. Subsampling the data yields fluctuations on the wrong scale, which have to be corrected to provide calibrated statistical inferences. I present a new procedure, the “bag of little bootstraps,” which circumvents this problem, inheriting the favorable theoretical properties of the bootstrap but also having a much more favorable computational profile.

2. The problem of matrix completion has been the focus of much recent work, both theoretical and practical. To take advantage of distributed computing architectures in this setting, it is natural to consider divide-and-conquer algorithms for matrix completion. I show that these work well in practice, but also note that new theoretical problems arise when attempting to characterize the statistical performance of these algorithms. Here the theoretical support is provided by concentration theorems for random matrices, and I present a new approach to matrix concentration based on Stein’s method.

3. Bayesian nonparametrics involves replacing the “prior distributions” of classical Bayesian analysis with “prior stochastic processes.” Of particular value are the class of “combinatorial stochastic processes,” which make it possible to express uncertainty (and perform inference) over combinatorial objects that are familiar as data structures in computer science.”

References are available on Michael’s homepage.