**I**n this fourth session of our One World ABC Seminar, my friend and coauthor Gael Martin, gave an after-dinner talk on focused Bayesian prediction, more in the spirit of Bissiri et al. than following a traditional ABC approach. because along with Ruben Loaiza-Maya and [my friend and coauthor] David Frazier, they consider the possibility of a (mild?) misspecification of the model. Using thus scoring rules à la Gneiting and Raftery. Gael had in fact presented an earlier version at our workshop in Oaxaca, in November 2018. As in other solutions of that kind, difficulty in weighting the score into a distribution. Although asymptotic irrelevance, direct impact on the current predictions, at least for the early dates in the time series… Further calibration of the set of interest A. Or the focus of the prediction. As a side note the talk perfectly fits the One World likelihood-free seminar as it does not use the likelihood function!

“The very premise of this paper is that, in reality, any choice of predictive class is such that the truth is not contained therein, at which point there is no reason to presume that the expectation of any particular scoring rule will be maximized at the truth or, indeed, maximized by the same predictive distribution that maximizes a different (expected) score.”

This approach requires the proxy class to be close enough to the true data generating model. Or in the word of the authors to be *plausible predictive* models. And to produce the true distribution via the score as it is proper. Or the closest to the true model in the misspecified family. I thus wonder at a possible extension with a non-parametric version, the prior being thus on functionals rather than parameters, if I understand properly the meaning of Π(P_{θ}). (Could the score function be misspecified itself?!) Since the score is replaced with its empirical version, the implementation is resorting to off-the-shelf MCMC. (I wonder for a few seconds if the approach could be seen as a pseudo-marginal MCMC but the estimation is always based on the same observed sample, hence does not directly fit the pseudo-marginal MCMC framework.)

*[Notice: Next talk in the series is tomorrow, 11:30am GMT+1.]*