Archive for Bayesian predictive

The winds of Winter [Bayesian prediction]

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , , , on October 7, 2014 by xi'an

A surprising entry on arXiv this morning: Richard Vale (from Christchurch, NZ) has posted a paper about the characters appearing in the yet hypothetical next volume of George R.R. Martin’s Song of ice and fire series, The winds of Winter [not even put for pre-sale on amazon!]. Using the previous five books in the series and the frequency of occurrence of characters’ point of view [each chapter being told as from the point of view of one single character], Vale proceeds to model the number of occurrences in a given book by a truncated Poisson model,

x_{it} \sim \mathcal{P}(\lambda_i)\text{ if }|t-\beta_i|<\tau_i

in order to account for [most] characters dying at some point in the series. All parameters are endowed with prior distributions, including the terrible “large” hyperpriors familiar to BUGS users… Despite the code being written in R by the author. The modelling does not use anything but the frequencies of the previous books, so knowledge that characters like Eddard Stark had died is not exploited. (Nonetheless, the prediction gives zero chapter to this character in the coming volumes.) Interestingly, a character who seemingly died at the end of the last book is still given a 60% probability of having at least one chapter in  The winds of Winter [no spoiler here, but many in the paper itself!]. As pointed out by the author, the model as such does not allow for prediction of new-character chapters, which remains likely given Martin’s storytelling style! Vale still predicts 11 new-character chapters, which seems high if considering the series should be over in two more books [and an unpredictable number of years!].

As an aside, this paper makes use of the truncnorm R package, which I did not know and which is based on John Geweke’s accept-reject algorithm for truncated normals that I (independently) proposed a few years later.

Bayesian Data Analysis [BDA3 – part #2]

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , on March 31, 2014 by xi'an

Here is the second part of my review of Gelman et al.’ Bayesian Data Analysis (third edition):

“When an iterative simulation algorithm is “tuned” (…) the iterations will not in general converge to the target distribution.” (p.297)

Part III covers advanced computation, obviously including MCMC but also model approximations like variational Bayes and expectation propagation (EP), with even a few words on ABC. The novelties in this part are centred at Stan, the language Andrew is developing around Hamiltonian Monte Carlo techniques, a sort of BUGS of the 10’s! (And of course Hamiltonian Monte Carlo techniques themselves. A few (nit)pickings: the book advises important resampling without replacement (p.266) which makes some sense when using a poor importance function but ruins the fundamentals of importance sampling. Plus, no trace of infinite variance importance sampling? of harmonic means and their dangers? In the Metropolis-Hastings algorithm, the proposal is called the jumping rule and denoted by Jt, which, besides giving the impression of a Jacobian, seems to allow for time-varying proposals and hence time-inhomogeneous Markov chains, which convergence properties are much hairier. (The warning comes much later, as exemplified in the above quote.) Moving from “burn-in” to “warm-up” to describe the beginning of an MCMC simulation. Being somewhat 90’s about convergence diagnoses (as shown by the references in Section 11.7), although the book also proposes new diagnoses and relies much more on effective sample sizes. Particle filters are evacuated in hardly half-a-page. Maybe because Stan does not handle particle filters. A lack of intuition about the Hamiltonian Monte Carlo algorithms, as the book plunges immediately into a two-page pseudo-code description. Still using physics vocabulary that put me (and maybe only me) off. Although I appreciated the advice to check analytical gradients against their numerical counterpart.

“In principle there is no limit to the number of levels of variation that can be handled in this way. Bayesian methods provide ready guidance in handling the estimation of the unknown parameters.” (p.381)

I also enjoyed reading the part about modes that stand at the boundary of the parameter space (Section 13.2), even though I do not think modes are great summaries in Bayesian frameworks and while I do not see how picking the prior to avoid modes at the boundary avoids the data impacting the prior, in fine. The variational Bayes section (13.7) is equally enjoyable, with a proper spelled-out illustration, introducing an unusual feature for Bayesian textbooks.  (Except that sampling without replacement is back!) Same comments for the Expectation Propagation (EP) section (13.8) that covers brand new notions. (Will they stand the test of time?!)

“Geometrically, if β-space is thought of as a room, the model implied by classical model selection claims that the true β has certain prior probabilities of being in the room, on the floor, on the walls, in the edge of the room, or in a corner.” (p.368)

Part IV is a series of five chapters about regression(s). This is somewhat of a classic, nonetheless  Chapter 14 surprised me with an elaborate election example that dabbles in advanced topics like causality and counterfactuals. I did not spot any reference to the g-prior or to its intuitive justifications and the chapter mentions the lasso as a regularisation technique, but without any proper definition of this “popular non-Bayesian form of regularisation” (p.368). In French: with not a single equation! Additional novelty may lie in the numerical prior information about the correlations. What is rather crucially (cruelly?) missing though is a clearer processing of variable selection in regression models. I know Andrew opposes any notion of a coefficient being exactly equal to zero, as ridiculed through the above quote, but the book does not reject model selection, so why not in this context?! Chapter 15 on hierarchical extensions stresses the link with exchangeability, once again. With another neat election example justifying the progressive complexification of the model and the cranks and toggles of model building. (I am not certain the reparameterisation advice on p.394 is easily ingested by a newcomer.) The chapters on robustness (Chap. 17) and missing data (Chap. 18) sound slightly less convincing to me, esp. the one about robustness as I never got how to make robustness agree with my Bayesian perspective. The book states “we do not have to abandon Bayesian principles to handle outliers” (p.436), but I would object that the Bayesian paradigm compels us to define an alternative model for those outliers and the way they are produced. One can always resort to a drudging exploration of which subsample of the dataset is at odds with the model but this may be unrealistic for large datasets and further tells us nothing about how to handle those datapoints. The missing data chapter is certainly relevant to such a comprehensive textbook and I liked the survey illustration where the missing data was in fact made of missing questions. However, I felt the multiple imputation part was not well-presented, fearing readers would not understand how to handle it…

“You can use MCMC, normal approximation, variational Bayes, expectation propagation, Stan, or any other method. But your fit must be Bayesian.” (p.517)

Part V concentrates the most advanced material, with Chapter 19 being mostly an illustration of a few complex models, slightly superfluous in my opinion, Chapter 20 a very short introduction to functional bases, including a basis selection section (20.2) that implements the “zero coefficient” variable selection principle refuted in the regression chapter(s), and does not go beyond splines (what about wavelets?), Chapter 21 a (quick) coverage of Gaussian processes with the motivating birth-date example (and two mixture datasets I used eons ago…), Chapter 22 a more (too much?) detailed study of finite mixture models, with no coverage of reversible-jump MCMC, and Chapter 23 an entry on Bayesian non-parametrics through Dirichlet processes.

“In practice, for well separated components, it is common to remain stuck in one labelling across all the samples that are collected. One could argue that the Gibbs sampler has failed in such a case.” (p.535)

To get back to mixtures, I liked the quote about the label switching issue above, as I was “one” who argued that the Gibbs sampler fails to converge! The corresponding section seems to favour providing a density estimate for mixture models, rather than component-wise evaluations, but it nonetheless mentions the relabelling by permutation approach (if missing our 2000 JASA paper). The section about inferring on the unknown number of components suggests conducting a regular Gibbs sampler on a model with an upper bound on the number of components and then checking for empty components, an idea I (briefly) considered in the mid-1990’s before the occurrence of RJMCMC. Of course, the prior on the components matters and the book suggests using a Dirichlet with fixed sum like 1 on the coefficients for all numbers of components.

“14. Objectivity and subjectivity: discuss the statement `People tend to believe results that support their preconceptions and disbelieve results that surprise them. Bayesian methods tend to encourage this undisciplined mode of thinking.’¨ (p.100)

Obviously, this being a third edition begets the question, what’s up, doc?!, i.e., what’s new [when compared with the second edition]? Quite a lot, even though I am not enough of a Gelmanian exegist to produce a comparision table. Well, for a starter, David Dunson and Aki Vethtari joined the authorship, mostly contributing to the advanced section on non-parametrics, Gaussian processes, EP algorithms. Then the Hamiltonian Monte Carlo methodology and Stan of course, which is now central to Andrew’s interests. The book does include a short Appendix on running computations in R and in Stan. Further novelties were mentioned above, like the vision of weakly informative priors taking over noninformative priors but I think this edition of Bayesian Data Analysis puts more stress on clever and critical model construction and on the fact that it can be done in a Bayesian manner. Hence the insistence on predictive and cross-validation tools. The book may be deemed somewhat short on exercices, providing between 3 and 20 mostly well-developed problems per chapter, often associated with datasets, rather than the less exciting counter-example above. Even though Andrew disagrees and his students at ENSAE this year certainly did not complain, I personally feel a total of 220 exercices is not enough for instructors and self-study readers. (At least, this reduces the number of email requests for solutions! Esp. when 50 of those are solved on the book website.) But this aspect is a minor quip: overall this is truly the reference book for a graduate course on Bayesian statistics and not only Bayesian data analysis.

Bayesian Data Analysis [BDA3]

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , on March 28, 2014 by xi'an

Andrew Gelman and his coauthors, John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Don Rubin, have now published the latest edition of their book Bayesian Data Analysis. David and Aki are newcomers to the authors’ list, with an extended section on non-linear and non-parametric models. I have been asked by Sam Behseta to write a review of this new edition for JASA (since Sam is now the JASA book review editor). After wondering about my ability to produce an objective review (on the one hand, this is The Competition  to Bayesian Essentials!, on the other hand Andrew is a good friend spending the year with me in Paris), I decided to jump for it and write a most subjective review, with the help of Clara Grazian who was Andrew’s teaching assistant this year in Paris and maybe some of my Master students who took Andrew’s course. The second edition was reviewed in the September 2004 issue of JASA and we now stand ten years later with an even more impressive textbook. Which truly what Bayesian data analysis should be.

This edition has five parts, Fundamentals of Bayesian Inference, Fundamentals of Bayesian Data Analysis, Advanced Computation, Regression Models, and Non-linear and Non-parametric Models, plus three appendices. For a total of xiv+662 pages. And a weight of 2.9 pounds (1395g on my kitchen scale!) that makes it hard to carry around in the metro…. I took it to Warwick (and then Nottingham and Oxford and back to Paris) instead.

We could avoid the mathematical effort of checking the integrability of the posterior density (…) The result would clearly show the posterior contour drifting off toward infinity.” (p.111)

While I cannot go into a detailed reading of those 662 pages (!), I want to highlight a few gems. (I already wrote a detailed and critical analysis of Chapter 6 on model checking in that post.) The very first chapter provides all the necessary items for understanding Bayesian Data Analysis without getting bogged in propaganda or pseudo-philosophy. Then the other chapters of the first part unroll in a smooth way, cruising on the B highway… With the unique feature of introducing weakly informative priors (Sections 2.9 and 5.7), like the half-Cauchy distribution on scale parameters. It may not be completely clear how weak a weakly informative prior, but this novel notion is worth including in a textbook. Maybe a mild reproach at this stage: Chapter 5 on hierarchical models is too verbose for my taste, as it essentially focus on the hierarchical linear model. Of course, this is an essential chapter as it links exchangeability, the “atom” of Bayesian reasoning used by de Finetti, with hierarchical models. Still. Another comment on that chapter: it broaches on the topic of improper posteriors by suggesting to run a Markov chain that can exhibit improperness by enjoying an improper behaviour. When it happens as in the quote above, fine!, but there is no guarantee this is always the case! For instance, improperness may be due to regions near zero rather than infinity. And a last barb: there is a dense table (Table 5.4, p.124) that seems to run contrariwise to Andrew’s avowed dislike of tables. I could also object at the idea of a “true prior distribution” (p.128), or comment on the trivia that hierarchical chapters seem to attract rats (as I also included a rat example in the hierarchical Bayes chapter of Bayesian Choice and so does the BUGS Book! Hence, a conclusion that Bayesian textbooks are better be avoided by muriphobiacs…)

“Bayes factors do not work well for models that are inherently continuous (…) Because we emphasize continuous families of models rather than discrete choices, Bayes factors are rarely relevant in our approach to Bayesian statistics.” (p.183 & p.193)

Part II is about “the creative choices that are required, first to set up a Bayesian model in a complex problem, then to perform the model checking and confidence building that is typically necessary to make posterior inferences scientifically defensible” (p.139). It is certainly one of the strengths of the book that it allows for a critical look at models and tools that are rarely discussed in more theoretical Bayesian books. As detailed in my  earlier post on Chapter 6, model checking is strongly advocated, via posterior predictive checks and… posterior predictive p-values, which are at best empirical indicators that something could be wrong, definitely not that everything’s allright! Chapter 7 is the model comparison equivalent of Chapter 6, starting with the predictive density (aka the evidence or the marginal likelihood), but completely bypassing the Bayes factor for information criteria like the Watanabe-Akaike or widely available information criterion (WAIC), and advocating cross-validation, which is empirically satisfying but formally hard to integrate within a full Bayesian perspective. Chapter 8 is about data collection, sample surveys, randomization and related topics, another entry that is missing from most Bayesian textbooks, maybe not that surprising given the research topics of some of the authors. And Chapter 9 is the symmetric in that it focus on the post-modelling step of decision making.

(Second part of the review to appear on Monday, leaving readers the weekend to recover!)

A discussion on Bayesian analysis : Selecting Noninformative Priors

Posted in Statistics with tags , , , , , , on February 26, 2014 by xi'an

Following an earlier post on the American Statistician 2013 paper by Seaman III and co-authors, Hidden dangers of specifying noninformative priors, my PhD student Kaniav Kamary wrote a paper re-analysing the examples processed by those authors and concluding to the stability of the posterior distributions of the parameters and to the effect of the noninformative prior being essentially negligible. (This is the very first paper quoting verbatim from the ‘Og!) Kaniav logically submitted the paper to the American Statistician.

hidden dangers of noninformative priors

Posted in Books, Statistics, University life with tags , , , , , on November 21, 2013 by xi'an

Last year, John Seaman (III), John Seaman (Jr.), and James Stamey published a paper in The American Statistician with the title Hidden dangers of specifying noninformative priors. (It does not seem to be freely available on-line.) I gave it to read to my PhD students, meaning to read towards the goal of writing a critical reply to the authors. In the meanwhile, here are my own two-cents on the paper.

“Applications typically employ Markov chain Monte Carlo (MCMC) methods to obtain posterior features, resulting in the need for proper priors, even when the modeler prefers that priors be relatively noninformative.” (p.77)

Apart from the above quote, which confuses proper priors with proper posteriors (maybe as the result of a contagious BUGS!), and which is used to focus solely and sort-of inappropriately on proper priors, there is no hard fact to bite in, but rather a collection of soft decisions and options that end up weakly supporting the authors’ thesis. (Obviously, following an earlier post, there is no such thing as a “noninformative” prior.) The paper is centred on four examples where a particular choice of (“noninformative”) prior leads to peaked or informative priors on some transform(s) of the parameters. Note that there is no definition provided for informative, non-informative, diffuse priors, except those found in BUGS with “extremely large variance” (p.77). (The quote below seems to settle on a uniform prior if one understands the “likely” as evaluated through the posterior density.) The argument of the authors is that “if parameters with diffuse proper priors are subsequently transformed, the resulting induced priors can, of course, be far from diffuse, possibly resulting in unintended influence on the posterior of the transformed parameters” (p.77).

Continue reading

%d bloggers like this: