Archive for Bernoulli factory

Barker at the Bernoulli factory

Posted in Books, Statistics with tags , , , , , , , on October 5, 2017 by xi'an

Yesterday, Flavio Gonçalves, Krzysztof Latuszýnski, and Gareth Roberts (Warwick) arXived a paper on Barker’s algorithm for Bayesian inference with intractable likelihoods.

“…roughly speaking Barker’s method is at worst half as good as Metropolis-Hastings.”

Barker’s acceptance probability (1965) is a smooth if less efficient version of Metropolis-Hastings. (Barker wrote his thesis in Adelaide, in the Mathematical Physics department. Most likely, he never interacted with Ronald Fisher, who died there in 1962) This smoothness is exploited by devising a Bernoulli factory consisting in a 2-coin algorithm that manages to simulate the Bernoulli variable associated with the Barker probability, from a coin that can simulate Bernoulli’s with probabilities proportional to [bounded] π(θ). For instance, using a bounded unbiased estimator of the target. And another coin that simulates another Bernoulli on a remainder term. Assuming the bound on the estimate of π(θ) is known [or part of the remainder term]. This is a neat result in that it expands the range of pseudo-marginal methods (and resuscitates Barker’s formula from oblivion!). The paper includes an illustration in the case of the far-from-toyish Wright-Fisher diffusion. [Making Fisher and Barker meeting, in the end!]

optimal Bernoulli factory

Posted in Statistics with tags , , , , , , , , , , on January 17, 2017 by xi'an

One of the last arXivals of the year was this paper by Luis Mendo on an optimal algorithm for Bernoulli factory (or Lovàsz‘s or yet Basu‘s) problems, i.e., for producing an unbiased estimate of f(p), 0<p<1, from an unrestricted number of Bernoulli trials with probability p of heads. (See, e.g., Mark Huber’s recent book for background.) This paper drove me to read an older 1999 unpublished document by Wästlund, unpublished because of the overlap with Keane and O’Brien (1994). One interesting gem in this document is that Wästlund produces a Bernoulli factory for the function f(p)=√p, which is not of considerable interest per se, but which was proposed to me as a puzzle by Professor Sinha during my visit to the Department of Statistics at the University of Calcutta. Based on his 1979 paper with P.K. Banerjee. The algorithm is based on a stopping rule N: throw a fair coin until the number of heads n+1 is greater than the number of tails n. The event N=2n+1 occurs with probability

{2n \choose n} \big/ 2^{2n+1}

[Using a biased coin with probability p to simulate a fair coin is straightforward.] Then flip the original coin n+1 times and produce a result of 1 if at least one toss gives heads. This happens with probability √p.

Mendo generalises Wästlund‘s algorithm to functions expressed as a power series in (1-p)

f(p)=1-\sum_{i=1}^\infty c_i(1-p)^i

with the sum of the weights being equal to one. This means proceeding through Bernoulli B(p) generations until one realisation is one or a probability

c_i\big/1-\sum_{j=1}^{i-1}c_j

event occurs [which can be derived from a Bernoulli B(p) sequence]. Furthermore, this version achieves asymptotic optimality in the number of tosses, thanks to a form of Cramer-Rao lower bound. (Which makes yet another connection with Kolkata!)

exam question

Posted in Kids, Statistics, University life with tags , , , , , , , , , on June 24, 2016 by xi'an

exo2A question for my third year statistics exam that I borrowed from Cross Validated: no student even attempted to solve this question…!

And another one borrowed from the highly popular post on the random variable [almost] always smaller than its mean!

a Bernoulli factory of sorts?

Posted in Books, Kids, Statistics with tags , , , , , on May 10, 2016 by xi'an

crane on Cockatoo Island, Sydney Harbour, Australia, July 15, 2012A nice question was posted on X validated as to figure out a way to simulate a Bernoulli B(q) variate when using only a Bernoulli B(p) generator. With the additional question of handling the special case q=a/b, a rational probability. This is not exactly a Bernoulli factory problem in that q does not write as f(p), but still a neat challenge. My solution would have been similar to the one posted by William Huber, namely to simulate a sequence of B(p) or B(1-p) towards zooming on q until the simulation of the underlying uniforms U allows us to conclude at the position of U wrt q. For instance, if p>q and X~B(p) is equal to zero, the underlying uniform is more than p, hence more than q, leading to returning zero for the B(q) generation. Else, a second B(p) or B(1-p) generation means breaking the interval (0,p) into two parts, one of which allows for stopping the generation, and so on. The solution posted by William Huber contains an R code that could be easily improved by choosing for each interval between p and (1-p) towards the maximal probability of stopping. I still wonder at the ultimate optimal solution that would minimise the (average or median) number of calls to the Bernoulli(p) generator.

perfect sampling, just perfect!

Posted in Books, Statistics, University life with tags , , , , , , , , on January 19, 2016 by xi'an

Great news! Mark Huber (whom I’ve know for many years, so this review may be not completely objective!) has just written a book on perfect simulation! I remember (and still share) the excitement of the MCMC community when the first perfect simulation papers of Propp and Wilson (1995) came up on the (now deceased) MCMC preprint server, as it seemed then the ideal (perfect!) answer to critics of the MCMC methodology, plugging MCMC algorithms into a generic algorithm that eliminating burnin, warmup, and convergence issues… It seemed both magical, with the simplest argument: “start at T=-∞ to reach stationarity at T=0”, and esoteric (“why forward fails while backward works?!”), requiring simple random walk examples (and a java app by Jeff Rosenthal) to understand the difference (between backward and forward), as well as Wilfrid Kendall’s kids’ coloured wood cubes and his layer of leaves falling on the ground and seen from below… These were exciting years, with MCMC still in its infancy, and no goal seemed too far away! Now that years have gone, and that the excitement has clearly died away, perfect sampling can be considered in a more sedate manner, with pros and cons well-understood. This is why Mark Huber’s book is coming at a perfect time if any! It covers the evolution of the perfect sampling techniques, from the early coupling from the past to the monotonous versions, to the coalescence principles, with applications to spatial processes, to the variations on nested sampling and their use in doubly intractable distributions, with forays into the (fabulous) Bernoulli factory problem (a surprise for me, as Bernoulli factories are connected with unbiasedness, not stationarity! Even though my only fieldwork [with Randal Douc] in such factories was addressing a way to turn MCMC into importance sampling. The key is in the notion of approximate densities, introduced in Section 2.6.). The book is quite thorough with the probabilistic foundations of the different principles, with even “a [tiny weeny] little bit of measure theory.

Any imperfection?! Rather, only a (short too short!) reflection on the limitations of perfect sampling, namely that it cannot cover the simulation of posterior distributions in the Bayesian processing of most statistical models. Which makes the quote

“Distributions where the label of a node only depends on immediate neighbors, and where there is a chance of being able to ignore the neighbors are the most easily handled by perfect simulation protocols (…) Statistical models in particular tend to fall into this category, as they often do not wish to restrict the outcome too severely, instead giving the data a chance to show where the model is incomplete or incorrect.” (p.223)

just surprising, given the very small percentage of statistical models which can be handled by perfect sampling. And the downsizing of perfect sampling related papers in the early 2000’s. Which also makes the final and short section on the future of perfect sampling somewhat restricted in its scope.

So, great indeed!, a close to perfect entry to a decade of work on perfect sampling. If you have not heard of the concept before, consider yourself lucky to be offered such a gentle guidance into it. If you have dabbled with perfect sampling before, reading the book will be like meeting old friends and hearing about their latest deeds. More formally, Mark Huber’s book should bring you a new perspective on the topic. (As for me, I had never thought of connecting perfect sampling with accept reject algorithms.)

MCMskv #4 [house with a vision]

Posted in Statistics with tags , , , , , , , , , , , , on January 9, 2016 by xi'an

OLYMPUS DIGITAL CAMERALast day at MCMskv! Not yet exhausted by this exciting conference, but this was the toughest day with one more session and a tutorial by Art Own on quasi Monte-Carlo. (Not even mentioning the night activities that I skipped. Or the ski break that I did not even consider.) Krys Latunszynski started with a plenary on exact methods for discretised diffusions, with a foray in Bernoulli factory problems. Then a neat session on adaptive MCMC methods that contained a talk by Chris Sherlock on delayed acceptance, where the approximation to the target was built by knn trees. (The adaptation was through the construction of the tree by including additional evaluations of the target density. Another paper sitting in my to-read list for too a long while: the exploitation of the observed values of π towards improving an MCMC sampler has always be “obvious” to me even though I could not see any practical way of doing so. )

It was wonderful that Art Owen accepted to deliver a tutorial at MCMskv on quasi-random Monte Carlo. Great tutorial, with a neat coverage of the issues most related to Monte Carlo integration. Since quasi-random sequences have trouble with accept/reject methods, a not-even-half-baked idea that came to me during Art’s tutorial was that the increased computing power granted by qMC could lead to a generic integration of the Metropolis-Hastings step in a Rao-Blackwellised manner. Art mentioned he was hoping that in a near future one could switch between pseudo- and quasi-random in an almost automated manner when running standard platforms like R. This would indeed be great, especially since quasi-random sequences seem to be available at the same cost as their pseudo-random counterpart. During the following qMC session, Art discussed the construction of optimal sequences on sets other than hypercubes (with the surprising feature that projecting optimal sequences from the hypercube does not work). Mathieu Gerber presented the quasi-random simulated annealing algorithm he developed with Luke Bornn that I briefly discussed a while ago. Or thought I did as I cannot trace a post on that paper! While the fact that annealing also works with quasi-random sequences is not astounding, the gain over random sequences shown on two examples is clear. The session also had a talk by Lester Mckey who relies Stein’s discrepancy to measure the value of an approximation to the true target. This was quite novel, with a surprising connection to Chris Oates’ talk and the use of score-based control variates, if used in a dual approach.

Another great session was the noisy MCMC one organised by Paul Jenkins (Warwick), with again a coherent presentation of views on the quality or lack thereof of noisy (or inexact) versions, with an update from Richard Everitt on inexact MCMC, Felipe Medina Aguayo (Warwick) on sufficient conditions for noisy versions to converge (and counterexamples), Jere Koskela (Warwick) on a pseudo-likelihood approach to the highly complex Kingman’s coalescent model in population genetics (of ABC fame!), and Rémi Bardenet on the tall data approximations techniques discussed in a recent post. Having seen or read most of those results previously did not diminish the appeal of the session.

MCqMC 2014 [day #1]

Posted in pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , on April 9, 2014 by xi'an

Leuven2

As I have been kindly invited to give a talk at MCqMC 2014, here am I. in Leuven, Belgium, for this conference I have never attended before. (I was also invited for MCqMC 2012 in Sydney The talk topics and the attendees’ “sociology” are quite similar to those of the IMACS meeting in Annecy last summer. Namely, rather little on MCMC, particle filters, and other tools familiar in Bayesian computational statistics, but a lot on diffusions and stochastic differential equations and of course quasi-Monte Carlo methods. I thus find myself at a boundary of the conference range and a wee bit lost by some talks, which even titles make little sense to me.

For instance, I have trouble to connect with multi-level Monte Carlo within my own referential. My understanding of the method is one of a control variate version of tempering, namely of using a sequence of approximations to the true target and using rougher approximations as control variates for the finer approximations. But I cannot find on the Web a statistical application of the method outside of diffusions and SDEs, i.e. outside of continuous time processes… Maybe using a particle filter from one approximation to the next, down in terms of roughness, could help.

“Several years ago, Giles (2008) introduced an intriguing multi-level idea to deal with such biased settings that can dramatically improve the rate of convergence and can even, in some settings, achieve the canonical “square root” convergence rate associated with unbiased Monte Carlo.” Rhee and Glynn, 2012

Those were my thoughts before lunchtime. today (namely April 7, 2014). And then, after lunch, Peter Glynn gave his plenary talk that just answered those questions of mine’s!!! Essentially, he showed that formula Pierre Jacob also used in his Bernoulli factory paper to transform a converging-biased-into-an-unbiased estimator, based on a telescopic series representation and a random truncation… This approach is described in a paper with Chang-han Rhee, arXived a few years ago. The talk also covered more recent work (presumably related with Chang-han Rhee’s thesis) extending the above to Markov chains. As explained to me later by Pierre Jacob [of Statisfaction fame!], a regular chain does not converge fast enough to compensate for the explosive behaviour of the correction factor, which is why Rhee and Glynn used instead a backward chain, linking to the exact or perfect samplers of the 1990’s (which origin can be related to a 1992 paper of Asmussen, Glynn and Thorisson). This was certainly the most riveting talk I attended in the past years in that it brought a direct answer to a question I was starting to investigate. And more. I was also wondering how connected it was with our “exact” representation of the stationary distribution (in an Annals of Probability paper with Jim Hobert).   Since we use a stopping rule based on renewal and a geometric waiting time, a somewhat empirical version of the inverse probability found in Peter’s talk. This talk also led me to re-consider a recent discussion we had in my CREST office with Andrew about using square root(ed) importance weights, since one of Peter’s slides exhibited those square roots as optimal. Paradoxically, Peter started the talk by down-playing it, stating there was a single idea therein and a single important slide, making it a perfect after-lunch talk: I wish I had actually had thrice more time to examine each slide! (In the afternoon session, Éric Moulines also gave a thought-provoking talk on particle islands and double bootstrap, a research project I will comment in more detail the day it gets arXived.)