A question that came out on X validated is asking for help in figuring out the UMVUE (uniformly minimal variance unbiased estimator) of (1-θ)½ when observing iid Bernoulli B(θ). As it happens, there is no unbiased estimator of this quantity and hence not UMVUE. But there exists a Bernoulli factory producing a coin with probability (1-θ)½ from draws of a coin with probability θ, hence a mean to produce unbiased estimators of this quantity. Although of course UMVUE does not make sense in this sequential framework. While Nacu & Peres (2005) were uncertain there was a Bernoulli factory for θ½, witness their Question #1, Mendo (2018) and Thomas and Blanchet (2018) showed that there does exist a Bernoulli factory solution for θa, 0≤a≤1, with constructive arguments that only require the series expansion of θ½. In my answer to that question, using a straightforward R code, I tested the proposed algorithm, which indeed produces an unbiased estimate of θ½… (Most surprisingly, the question got closed as a “self-study” question, which sounds absurd since it could not occur as an exercise or an exam question, unless the instructor is particularly clueless.)
Archive for Bernoulli factory
another Bernoulli factory
Posted in Books, Kids, pictures, R, Statistics with tags Bernoulli factory, Cockatoo Island, cross validated, existence of unbiased estimators, industrial ruins, Sydney Harbour, UMVUE on May 18, 2020 by xi'anback to the Bernoulli factory
Posted in Books, Statistics, University life with tags Bernoulli factory, randomisation, stopping rule, University of Warwick on April 7, 2020 by xi'an“The results show that the proposed algorithm is asymptotically optimal for the mentioned subclass of functions, in the sense that for any other fast algorithm E[N] grows at least as fast with p.”
Murray Pollock (Warwick U. for a wee more days!) pointed out to me this paper of Luis Mendo on a Bernoulli factory algorithm that estimates functions [of p] that can be expressed as power series [of p]. Essentially functions f(p) such that f(0)=0 and f(1)=1. The big difference with earlier algorithms, as far as I can tell, is that the approach involves a randomised stopping rule that involves, on top of the unlimited sequence of Bernoulli B(p) variates a second sequence of Uniform variates, which sounds to me like a change of paradigm, given the much higher degree of freedom brought by Uniform variates (as opposed to Bernoulli variates with an unknown value of p). Although there exists a non-randomised version in the paper. The proposed algorithm is as follows, using a sequence of d’s issued from the power series coefficients:
1. Set i=1.
2. Take one input X[i].
3. Produce U[i] uniform on (0,1). Let V[i]=1 if U[i]<d[i] and V[i]=0 otherwise.
If V[i] or X[i] are equal to 1, output X[i] and finish.
Else increase i and go back to step2.
As the author mentions, this happens to be a particular case of the reverse-time martingale approach of Łatuszynski, Kosmidis, Papaspiliopoulos and Roberts (Warwick connection as well!). With an average number of steps equal to f(p)/p, surprisingly simple, and somewhat of an optimal rate. While the functions f(p) are somewhat restricted, this is nice work
riddles on Egyptian fractions and Bernoulli factories
Posted in Books, Kids, R with tags ancient mathematics, antiquity, Bernoulli factory, Egyptian fractions, Fibonacci, FiveThirtyEight, greedy algorithm, Henry Rhind, hieroglyphs, Liber Abaci, Rhind mathematical papyrus, The Riddler, Thebes, unit fractions on June 11, 2019 by xi'anTwo fairy different riddles on the weekend Riddler. The first one is (in fine) about Egyptian fractions: I understand the first one as
Find the Egyptian fraction decomposition of 2 into 11 distinct unit fractions that maximises the smallest fraction.
And which I cannot solve despite perusing this amazing webpage on Egyptian fractions and making some attempts at brute force random exploration. Using Fibonacci’s greedy algorithm. I managed to find such decompositions
2 = 1 +1/2 +1/6 +1/12 +1/16 +1/20 +1/24 +1/30 +1/42 +1/48 +1/56
after seeing in this short note
2 = 1 +1/3 +1/5 +1/7 +1/9 +1/42 +1/15 +1/18 +1/30 +1/45 +1/90
And then Robin came with the following:
2 = 1 +1/4 +1/5 +1/8 +1/10 +1/12 +1/15 +1/20 +1/21 +1/24 +1/28
which may prove to be the winner! But there is even better:
2 = 1 +1/5 +1/6 +1/8 +1/9 +1/10 +1/12 +1/15 +1/18 +1/20 +1/24
The second riddle is a more straightforward Bernoulli factory problem:
Given a coin with a free-to-choose probability p of head, design an experiment with a fixed number k of draws that returns three outcomes with equal probabilities.
For which I tried a brute-force search of all possible 3-partitions of the 2-to-the-k events for a range of values of p from .01 to .5 and for k equal to 3,4,… But never getting an exact balance between the three groups. Reading later the solution on the Riddler, I saw that there was an exact solution for 4 draws when
Augmenting the precision of my solver (by multiplying all terms by 100), I indeed found a difference of
> solver((3-sqrt(3*(4*sqrt(6)-9)))/6,ba=1e5)[1]
[1] 8.940697e-08
which means an error of 9 x 100⁻⁴ x 10⁻⁸, ie roughly 10⁻¹⁵.
Bernoulli race particle filters
Posted in Books, pictures, Statistics, University life with tags auxiliary variable, Bernoulli distribution, Bernoulli factory, intractable constant, Jakob Bernoulli, Monte Carlo approximations, normalising constant, particle filters, University of Oxford on March 27, 2019 by xi'anSebastian Schmon, Arnaud Doucet and George Deligiannidis have recently arXived an AISTATS paper with the above nice title. The motivation for the extension is facing intractable particle weights for state space models, as for instance in discretised diffusions. In most cases, actually, the weight associated with the optimal forward proposal involves an intractable integral which is the predictive of the current observed variate given the past hidden states. And in some cases, there exist unbiased and non-negative estimators of the targets, which can thus be substituted, volens nolens, to the original filter. As in many pseudo-marginal derivations, this new algorithm can be interpreted as targeting an augmented distribution that involves the auxiliary random variates behind the unbiased estimators of the particle weights. A worthwhile remark since it allows for the preservation of the original target as in (8) provided the auxiliary random variates are simulated from the right conditionals. (At least ideally as I have no clue when this is feasible.)
“if Bernoulli resampling is per-formed, the variance for any Monte Carlo estimate will be the same as if the true weights were known and one applies standard multinomial resampling.”
The Bernoulli race in the title stands for a version of the Bernoulli factory problem, where an intractable and bounded component of the weight can be turned into a probability, for which a Bernoulli draw is available, hence providing a Multinomial sampling with the intractable weights since replacing the exact probability with an estimate does not modify the Bernoulli distribution, amazingly so! Even with intractable normalising constants in particle filters. The practicality of the approach may however be restricted by the possibility of some intractable terms being very small and requiring many rejections for one acceptance, as the number of attempts is a compound geometric. The intractability may add to the time request the drawback of keeping this feature hidden as well. Or force some premature interruption in the settings of a parallel implementation.