Archive for bioinformatics

ABC’ory in Banff [17w5025]

Posted in Books, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on February 27, 2017 by xi'an

And another exciting and animated [last] day of ABC’ory [and practice]!  Kyle Cranmer exposed a density ratio density estimation approach I had not seen before [and will comment here soon]. Patrick Muchmore talked about unbiased estimators of Gaussian and non-Gaussian densities in elliptically contoured distributions which allows for running pseudo-MCMC than ABC. This reminded me of using the same tool [for those distributions can be expressed as mixtures of normals] in my PhD thesis, if for completely different purposes. In his talk, including a presentation of an ABC blackbox platform called ELFI, Samuel Kaski did translate statistical inference as inverse reinforcement learning: I hope this does not catch! In the afternoon, Dennis Prangle gave us the intuition behind his rare event ABC, which is not estimating rare events by ABC but rather using rare event simulation to improve ABC. [A paper I will a.s. comment here soon as well!] And Scott Sisson concluded the day and the week with his views on ABC for high dimensions.

While being obviously biased as the organiser of the workshop, I nonetheless feel it was a wonderful meeting with just the right number of participants to induce interactions and discussions during and around the talk, as well as preserve some time for pairwise interactions. Like all other workshops I contributed to in BIRS along the years

07w5079 2007-07-01 Bioinformatics, Genetics and Stochastic Computation: Bridging the Gap
10w2170 2010-09-10 Hierarchical Bayesian Methods in Ecology
14w5125 2014-03-02 Advances in Scalable Bayesian Computation

this is certainly a highly profitable one! For a [major] change, the next one [18w5023] will take place in Oaxaca, Mexico, and will see computational statistics meet molecular simulation. [As an aside, here are the first and last slides of Ewan Cameron’s talk, appropriately illustrating beginning and end, for both themes of his talk: epidemiology and astronomy!]

201702211013-cameron
img-20170221-wa0006

 

 

new version of abcrf

Posted in R, Statistics, University life with tags , , , , , , on February 12, 2016 by xi'an
fig-tree near Brisbane, Australia, Aug. 18, 2012Version 1.1 of our R library abcrf version 1.1  is now available on CRAN.  Improvements against the earlier version are numerous and substantial. In particular,  calculations of the random forests have been parallelised and, for machines with multiple cores, the computing gain can be enormous. (The package does along with the random forest model choice paper published in Bioinformatics.)

ABC model choice via random forests accepted!

Posted in Books, pictures, Statistics, University life with tags , , , , , on October 21, 2015 by xi'an

treerise6“This revision represents a very nice response to the earlier round of reviews, including a significant extension in which the posterior probability of the selected model is now estimated (whereas previously this was not included). The extension is a very nice one, and I am happy to see it included.” Anonymous

Great news [at least for us], our paper on ABC model choice has been accepted by Bioninformatics! With the pleasant comment above from one anonymous referee. This occurs after quite a prolonged gestation, which actually contributed to a shift in our understanding and our implementation of the method. I am still a wee bit unhappy at the rejection by PNAS, but it paradoxically led to a more elaborate article. So all is well that ends well! Except the story is not finished and we have still exploring the multiple usages of random forests in ABC.

abcfr 0.9-3

Posted in R, Statistics, University life with tags , , , , , , , , on August 27, 2015 by xi'an

garden tree, Jan. 12, 2012In conjunction with our reliable ABC model choice via random forest paper, about to be resubmitted to Bioinformatics, we have contributed an R package called abcrf that produces a most likely model and its posterior probability out of an ABC reference table. In conjunction with the realisation that we could devise an approximation to the (ABC) posterior probability using a secondary random forest. “We” meaning Jean-Michel Marin and Pierre Pudlo, as I only acted as a beta tester!

abcrfThe package abcrf consists of three functions:

  • abcrf, which constructs a random forest from a reference table and returns an object of class `abc-rf’;
  • plot.abcrf, which gives both variable importance plot of a model choice abc-rf object and the projection of the reference table on the LDA axes;
  • predict.abcrf, which predict the model for new data and evaluate the posterior probability of the MAP.

An illustration from the manual:

data(snp)
data(snp.obs)
mc.rf <- abcrf(snp[1:1e3, 1], snp[1:1e3, -1])
predict(mc.rf, snp[1:1e3, -1], snp.obs)

nested sampling for systems biology

Posted in Books, Statistics, University life with tags , , , , on January 14, 2015 by xi'an

In conjunction with the recent PNAS paper on massive model choice, Rob Johnson†, Paul Kirk and Michael Stumpf published in Bioinformatics an implementation of nested sampling that is designed for biological applications, called SYSBIONS. Hence the NS for nested sampling! The C software is available on-line. (I had planned to post this news next to my earlier comments but it went under the radar…)