## a perfectly normally distributed sample

Posted in R, Statistics with tags , , , , , , , , on May 9, 2019 by xi'an

When I saw this title on R-bloggers, I was wondering how “more perfect” a Normal sample could be when compared with the outcome of rnorm(n). Hence went checking the original blog on `bayestestR` in search of more information. Which was stating nothing more than how to generate a sample is perfectly normal by using the `rnorm_perfect` function. Still unsure of the meaning, I contacted one of the contributors who replied very quickly

…that’s actually a good question. I would say an empirical sample having characteristics as close as possible to a cannonic gaussian distribution.
and again leaving me hungering for more details. I thus downloaded the package `bayestestR` and opened the `rnorm_perfect` function. Which is simply the sequence of n-quantiles
stats::qnorm(seq(1/n, 1 – 1/n, length.out = n), mean, sd)
which I would definitely not call a sample as it has nothing random. And perfect?! Not really, unless one associates randomness and imperfection.

## multiplying a Gaussian matrix and a Gaussian vector

Posted in Books with tags , , , , , on March 2, 2017 by xi'an

This arXived note by Pierre-Alexandre Mattei was actually inspired by one of my blog entries, itself written from a resolution of a question on X validated. The original result about the Laplace distribution actually dates at least to 1932 and a paper by Wishart and Bartlett!I am not sure the construct has clear statistical implications, but it is nonetheless a good calculus exercise.

The note produces an extension to the multivariate case. Where the Laplace distribution is harder to define, in that multiple constructions are possible. The current paper opts for a definition based on the characteristic function. Which leads to a rather unsavoury density with Bessel functions. It however satisfies the constructive definition of being a multivariate Normal multiplied by a χ variate plus a constant vector multiplied by the same squared χ variate. It can also be derived as the distribution of

Wy+||y||²μ

when W is a (p,q) matrix with iid Gaussian columns and y is a Gaussian vector with independent components. And μ is a vector of the proper dimension. When μ=0 the marginals remain Laplace.

## a new Editor for Series B

Posted in Statistics with tags , , , on January 16, 2017 by xi'an

As every odd year, the Royal Statistical Society is seeking a new joint editor for Series B! After four years of dedication to the (The!) journal, Piotr Fryzlewicz is indeed going to retire from this duty by the end of 2017. Many thanks to Piotr for his unfailing involvement in Series B and the preservation of its uncompromising selection of papers! The call thus open for candidates for the next round of editorship, from 2018 to 2021, with a deadline of 31 January, 2017. Interested candidates should contact Martin Owen, at the Society’s address or by email at rss.org.uk with journal as recipient (local-part). The new editor will work with the current joint editor, David Dunson, whose term runs till December 2019. (I am also looking forward working with Piotr’s successor in developing the Series B blog, Series’ Blog!)

## new kid on the blog

Posted in Kids, Statistics, University life with tags , , , , , , on January 27, 2016 by xi'an

[I first thought this title was highly original but a google search showed me wrong…] This short post to point out to the new blog started by Ingmar Schuster on computational statistics and linguistics. Which, so far, keeps strictly to the discussion of recent research papers (rather than ratiocinating about all kinds of tangential topics like a certain ‘Og…) Some of which we may discuss in parallel. And some not. So keep posted! Ingmar came to Paris-Dauphine for a doctoral visit last Winter and is back as a postdoc (supported by the Fondation des Sciences Mathématiques de Paris) since last Fall. Working with me and Nicolas, among others.

## [h]it figures

Posted in Books, pictures with tags , , , , , on June 1, 2014 by xi'an

Just a few figures from wordpress about the ‘Og:

• 2,845 posts;
• 1,009,428 views;