Archive for book cover

exit strategy

Posted in Books, pictures with tags , , , , on August 31, 2021 by xi'an

poems that solve puzzles [book review]

Posted in Books, Kids, University life with tags , , , , , , , , , , , , , , , , , , on January 7, 2021 by xi'an

Upon request, I received this book from Oxford University Press for review. Poems that Solve Puzzles is a nice title and its cover is quite to my linking (for once!). The author is Chris Bleakley, Head of the School of Computer Science at UCD.

“This book is for people that know algorithms are important, but have no idea what they are.”

These is the first sentence of the book and hence I am clearly falling outside the intended audience. When I asked OUP for a review copy, I was more thinking in terms of Robert Sedgewick’s Algorithms, whose first edition still sits on my shelves and which I read from first to last page when it appeared [and was part of my wife’s booklist]. This was (and is) indeed a fantastic book to learn how to build and optimise algorithms and I gain a lot from it (despite remaining a poor programmer!).

Back to poems, this one reads much more like an history of computer science for newbies than a deep entry into the “science of algorithms”, with imho too little on the algorithms themselves and their connections with computer languages and too much emphasis on the pomp and circumstances of computer science (like so-and-so got the ACM A.M. Turing Award in 19… and  retired in 19…). Beside the antique algorithms for finding primes, approximating π, and computing the (fast) Fourier transform (incl. John Tukey), the story moves quickly to the difference engine of Charles Babbage and Ada Lovelace, then to Turing’s machine, and artificial intelligence with the first checkers codes, which already included some learning aspects. Some sections on the ENIAC, John von Neumann and Stan Ulam, with the invention of Monte Carlo methods (but no word on MCMC). A bit of complexity theory (P versus NP) and then Internet, Amazon, Google, Facebook, Netflix… Finishing with neural networks (then and now), the unavoidable AlphaGo, and the incoming cryptocurrencies and quantum computers. All this makes for pleasant (if unsurprising) reading and could possibly captivate a young reader for whom computers are more than a gaming console or a more senior reader who so far stayed wary and away of computers. But I would have enjoyed much more a low-tech discussion on the construction, validation and optimisation of algorithms, namely a much soft(ware) version, as it would have made it much more distinct from the existing offer on the history of computer science.

[Disclaimer about potential self-plagiarism: this post or an edited version of it will eventually appear in my Books Review section in CHANCE.]

human resource [Nature cover]

Posted in Statistics with tags , , , , , , , , , , on August 7, 2020 by xi'an

Principles of scientific methods [not a book review]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on November 11, 2014 by xi'an

Mark Chang, author of Paradoxes in Scientific Inference and vice-president of AMAG Pharmaceuticals, has written another book entitled Principles of Scientific Methods. As was clear from my CHANCE review of Paradoxes in Scientific Inference, I did not find much appeal in this earlier book, even after the author wrote a reply (first posted on this blog and later printed in CHANCE). Hence a rather strong reluctance [of mine] to engage into another highly critical review when I received this new opus by the same author. [And the brainwave cover just put me off even further, although I do not want to start a review by criticising the cover, it did not go that well with the previous attempts!]

After going through Principles of Scientific Methods, I became ever more bemused about the reason(s) for writing or publishing such a book, to the point I decided not to write a CHANCE review on it… (But, having spent some Métro rides on it, I still want to discuss why. Read at your own peril!)

Continue reading

paradoxes in scientific inference

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on November 23, 2012 by xi'an

This CRC Press book was sent to me for review in CHANCE: Paradoxes in Scientific Inference is written by Mark Chang, vice-president of AMAG Pharmaceuticals. The topic of scientific paradoxes is one of my primary interests and I have learned a lot by looking at Lindley-Jeffreys and Savage-Dickey paradoxes. However, I did not find a renewed sense of excitement when reading the book. The very first (and maybe the best!) paradox with Paradoxes in Scientific Inference is that it is a book from the future! Indeed, its copyright year is 2013 (!), although I got it a few months ago. (Not mentioning here the cover mimicking Escher’s “paradoxical” pictures with dices. A sculpture due to Shigeo Fukuda and apparently not quoted in the book. As I do not want to get into another dice cover polemic, I will abstain from further comments!)

Now, getting into a deeper level of criticism (!), I find the book very uneven and overall quite disappointing. (Even missing in its statistical foundations.) Esp. given my initial level of excitement about the topic!

First, there is a tendency to turn everything into a paradox: obviously, when writing a book about paradoxes, everything looks like a paradox! This means bringing into the picture every paradox known to man and then some, i.e., things that are either un-paradoxical (e.g., Gödel’s incompleteness result) or uninteresting in a scientific book (e.g., the birthday paradox, which may be surprising but is far from a paradox!). Fermat’s theorem is also quoted as a paradox, even though there is nothing in the text indicating in which sense it is a paradox. (Or is it because it is simple to express, hard to prove?!) Similarly, Brownian motion is considered a paradox, as “reconcil[ing] the paradox between two of the greatest theories of physics (…): thermodynamics and the kinetic theory of gases” (p.51) For instance, the author considers the MLE being biased to be a paradox (p.117), while omitting the much more substantial “paradox” of the non-existence of unbiased estimators of most parameters—which simply means unbiasedness is irrelevant. Or the other even more puzzling “paradox” that the secondary MLE derived from the likelihood associated with the distribution of a primary MLE may differ from the primary. (My favourite!)

When the null hypothesis is rejected, the p-value is the probability of the type I error.Paradoxes in Scientific Inference (p.105)

The p-value is the conditional probability given H0.” Paradoxes in Scientific Inference (p.106)

Second, the depth of the statistical analysis in the book is often found missing. For instance, Simpson’s paradox is not analysed from a statistical perspective, only reported as a fact. Sticking to statistics, take for instance the discussion of Lindley’s paradox. The author seems to think that the problem is with the different conclusions produced by the frequentist, likelihood, and Bayesian analyses (p.122). This is completely wrong: Lindley’s (or Lindley-Jeffreys‘s) paradox is about the lack of significance of Bayes factors based on improper priors. Similarly, when the likelihood ratio test is introduced, the reference threshold is given as equal to 1 and no mention is later made of compensating for different degrees of freedom/against over-fitting. The discussion about p-values is equally garbled, witness the above quote which (a) conditions upon the rejection and (b) ignores the dependence of the p-value on a realized random variable. Continue reading

%d bloggers like this: