Archive for Carnegie Mellon University

dominating measure

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , on March 21, 2019 by xi'an

Yet another question on X validated reminded me of a discussion I had once  with Jay Kadane when visiting Carnegie Mellon in Pittsburgh. Namely the fundamentally ill-posed nature of conjugate priors. Indeed, when considering the definition of a conjugate family as being a parameterised family Þ of distributions over the parameter space Θ stable under transform to the posterior distribution, this property is completely dependent (if there is such a notion as completely dependent!) on the dominating measure adopted on the parameter space Θ. Adopted is the word as there is no default, reference, natural, &tc. measure that promotes one specific measure on Θ as being the dominating measure. This is a well-known difficulty that also sticks out in most “objective Bayes” problems, as well as with maximum entropy priors. This means for instance that, while the Gamma distributions constitute a conjugate family for a Poisson likelihood, so do the truncated Gamma distributions. And so do the distributions which density (against a Lebesgue measure over an arbitrary subset of (0,∞)) is the product of a Gamma density by an arbitrary function of θ. I readily acknowledge that the standard conjugate priors as introduced in every Bayesian textbook are standard because they facilitate (to a certain extent) posterior computations. But, just like there exist an infinity of MaxEnt priors associated with an infinity of dominating measures, there exist an infinity of conjugate families, once more associated with an infinity of dominating measures. And the fundamental reason is that the sampling model (which induces the shape of the conjugate family) does not provide a measure on the parameter space Θ.

ABC²DE

Posted in Books, Statistics with tags , , , , , , , , , , , , , on June 25, 2018 by xi'an

A recent arXival on a new version of ABC based on kernel estimators (but one could argue that all ABC versions are based on kernel estimators, one way or another.) In this ABC-CDE version, Izbicki,  Lee and Pospisilz [from CMU, hence the picture!] argue that past attempts failed to exploit the full advantages of kernel methods, including the 2016 ABCDE method (from Edinburgh) briefly covered on this blog. (As an aside, CDE stands for conditional density estimation.) They also criticise these attempts at selecting summary statistics and hence failing in sufficiency, which seems a non-issue to me, as already discussed numerous times on the ‘Og. One point of particular interest in the long list of drawbacks found in the paper is the inability to compare several estimates of the posterior density, since this is not directly ingrained in the Bayesian construct. Unless one moves to higher ground by calling for Bayesian non-parametrics within the ABC algorithm, a perspective which I am not aware has been pursued so far…

The selling points of ABC-CDE are that (a) the true focus is on estimating a conditional density at the observable x⁰ rather than everywhere. Hence, rejecting simulations from the reference table if the pseudo-observations are too far from x⁰ (which implies using a relevant distance and/or choosing adequate summary statistics). And then creating a conditional density estimator from this subsample (which makes me wonder at a double use of the data).

The specific density estimation approach adopted for this is called FlexCode and relates to an earlier if recent paper from Izbicki and Lee I did not read. As in many other density estimation approaches, they use an orthonormal basis (including wavelets) in low dimension to estimate the marginal of the posterior for one or a few components of the parameter θ. And noticing that the posterior marginal is a weighted average of the terms in the basis, where the weights are the posterior expectations of the functions themselves. All fine! The next step is to compare [posterior] estimators through an integrated squared error loss that does not integrate the prior or posterior and does not tell much about the quality of the approximation for Bayesian inference in my opinion. It is furthermore approximated by  a doubly integrated [over parameter and pseudo-observation] squared error loss, using the ABC(ε) sample from the prior predictive. And the approximation error only depends on the regularity of the error, that is the difference between posterior and approximated posterior. Which strikes me as odd, since the Monte Carlo error should take over but does not appear at all. I am thus unclear as to whether or not the convergence results are that relevant. (A difficulty with this paper is the strong dependence on the earlier one as it keeps referencing one version or another of FlexCode. Without reading the original one, I spotted a mention made of the use of random forests for selecting summary statistics of interest, without detailing the difference with our own ABC random forest papers (for both model selection and estimation). For instance, the remark that “nuisance statistics do not affect the performance of FlexCode-RF much” reproduces what we observed with ABC-RF.

The long experiment section always relates to the most standard rejection ABC algorithm, without accounting for the many alternatives produced in the literature (like Li and Fearnhead, 2018. that uses Beaumont et al’s 2002 scheme, along with importance sampling improvements, or ours). In the case of real cosmological data, used twice, I am uncertain of the comparison as I presume the truth is unknown. Furthermore, from having worked on similar data a dozen years ago, it is unclear why ABC is necessary in such context (although I remember us running a test about ABC in the Paris astrophysics institute once).

Steve Fienberg’ obituary in Nature

Posted in Statistics with tags , , , , , , , , on March 10, 2017 by xi'an

“Stephen Fienberg was the ultimate public statistician.”

Robin Mejia from CMU published in the 23 Feb issue of Nature an obituary of Steve Fienberg that sums up beautifully Steve’s contributions to science and academia. I like the above quote very much, as indeed Steve was definitely involved in public policies, towards making those more rational and fair. I remember the time he came to Paris-Dauphine to give a seminar and talk on his assessment in a NAS committee on the polygraph (and my surprise at it being used at all in the US and even worse in judiciary issues). Similarly, I remember his involvement in making the US Census based on surveys rather than on an illusory exhaustive coverage of the entire US population. Including a paper in Nature about the importance of surveys. And his massive contributions to preserving privacy in surveys and databases, an issue in which he was a precursor (even though my colleagues at the French Census Bureau did not catch the opportunity when he spent a sabbatical in Paris in 2004). While it is such a sad circumstance that lead to statistics getting a rare entry in Nature, I am glad that Steve can also be remembered that way.

Statistics done wrong [book review]

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , , , , on March 16, 2015 by xi'an

no starch press (!) sent me the pdf version of this incoming book, Statistics done wrong, by Alex Reinhart, towards writing a book review for CHANCE, and I read it over two flights, one from Montpellier to Paris last week, and from Paris to B’ham this morning. The book is due to appear on March 16. It expands on a still existing website developed by Reinhart. (Discussed a year or so away on Andrew’s blog, most in comments, witness Andrew’s comment below.) Reinhart who is, incidentally or not, is a PhD candidate in statistics at Carnegie Mellon University. After apparently a rather consequent undergraduate foray into physics. Quite an unusual level of maturity and perspective for a PhD student..!

“It’s hard for me to evaluate because I am so close to the material. But on first glance it looks pretty reasonable to me.” A. Gelman

Overall, I found myself enjoying reading the book, even though I found the overall picture of the infinitely many mis-uses of statistics rather grim and a recipe for despairing of ever setting things straight..! Somehow, this is an anti-textbook, in that it warns about many ways of applying the right statistical technique in the wrong setting, without ever describing those statistical techniques. Actually without using a single maths equation. Which should be a reason good enough for me to let all hell break loose on that book! But, no, not really, I felt no compunction about agreeing with Reinhart’s warning and if you have reading Andrew’s blog for a while you should feel the same…

“Then again for a symptom like spontaneous human combustion you might get excited about any improvement.” A. Reinhart (p.13)

Maybe the limitation in the exercise is that statistics appears so much fraught with dangers of over-interpretation and false positive and that everyone (except physicists!) is bound to make such invalidated leaps in conclusion, willingly or not, that it sounds like the statistical side of Gödel’s impossibility theorem! Further, the book moves from recommendation at the individual level, i.e., on how one should conduct an experiment and separate data for hypothesis building from data for hypothesis testing, to a universal criticism of the poor standards of scientific publishing and the unavailability of most datasets and codes. Hence calling for universal reproducibility protocols that reminded of the directions explored in this recent book I reviewed on that topic. (The one the rogue bird did not like.) It may be missing on the bright side of things, for instance the wonderful possibility to use statistical models to produce simulated datasets that allow for an evaluation of the performances of a given procedure in the ideal setting. Which would have helped the increasingly depressed reader in finding ways of checking how wrongs things could get..! But also on the dark side, as it does not say much about the fact that a statistical model is most presumably wrong. (Maybe a physicist’s idiosyncrasy!) There is a chapter entitled Model Abuse, but all it does is criticise stepwise regression and somehow botches the description of Simpson’s paradox.

“You can likely get good advice in exchange for some chocolates or a beer or perhaps coauthorship on your next paper.” A. Reinhart (p.127)

The final pages are however quite redeeming in that they acknowledge that scientists from other fields cannot afford a solid enough training in statistics and hence should hire statisticians as consultants for the data collection, analysis and interpretation of their experiments. A most reasonable recommendation!

methods for quantifying conflict casualties in Syria

Posted in Books, Statistics, University life with tags , , , , , , , , , , on November 3, 2014 by xi'an

On Monday November 17, 11am, Amphi 10, Université Paris-Dauphine,  Rebecca Steorts from CMU will give a talk at the GT Statistique et imagerie seminar:

Information about social entities is often spread across multiple large databases, each degraded by noise, and without unique identifiers shared across databases.Entity resolution—reconstructing the actual entities and their attributes—is essential to using big data and is challenging not only for inference but also for computation.

In this talk, I motivate entity resolution by the current conflict in Syria. It has been tremendously well documented, however, we still do not know how many people have been killed from conflict-related violence. We describe a novel approach towards estimating death counts in Syria and challenges that are unique to this database. We first introduce computational speed-ups to avoid all-to-all record comparisons based upon locality-sensitive hashing from the computer science literature. We then introduce a novel approach to entity resolution by discovering a bipartite graph, which links manifest records to a common set of latent entities. Our model quantifies the uncertainty in the inference and propagates this uncertainty into subsequent analyses. Finally, we speak to the success and challenges of solving a problem that is at the forefront of national headlines and news.

This is joint work with Rob Hall (Etsy), Steve Fienberg (CMU), and Anshu Shrivastava (Cornell University).

[Note that Rebecca will visit the maths department in Paris-Dauphine for two weeks and give a short course in our data science Master on data confidentiality, privacy and statistical disclosure (syllabus).]

Pittsburgh snapshot

Posted in pictures, Running, Travel, University life with tags , , , , on November 8, 2013 by xi'an

IMG_18990

a talk with Jay

Posted in Books, Running, Statistics, Travel, University life with tags , , , , , , , , , , on November 1, 2013 by xi'an

IMG_1900I had a wonderful time in CMU, talking with a lot of faculty about their research (and mine), like reminiscing of things past and expanding on things to come with Larry (not to mention exchanging blogging impressions), giving my seminar talk, having a great risotto at Casbah, and a nice dinner at Legume, going for morning runs in the nearby park… One particularly memorable moment was the discussion I had with Jay as/since he went back to our diverging views about objective Bayes and improper priors, as expressed in the last chapter of his book and my review of it. While we kept disagreeing on their relevance and on whether or not they should be used, I had to concede that one primary reason for using reference priors is one of laziness in not seeking expert opinions. Even though there always is a limit to the information provided by such experts that means a default input at one level or the next (of a hierarchical model). Jay also told me of his proposal (as reported in his 1996 Bayesian methods and ethics in a clinical trial design book) for conducting clinical trials with several experts (with different priors) and sequentially weighting them by their predictive success. Proposal which made me think of a sequential way to compare models by their predictive abilities and still use improper priors…