## Archive for Chris Drovandi

## data science [down] under the hood [webinar]

Posted in Statistics with tags approximate Bayesian inference, Bayesian Analysis, Brisbane, Chris Drovandi, computational statistics, QUT, simulation on June 21, 2020 by xi'an## ABC in Sydney [guest post #2]

Posted in pictures, Statistics, University life with tags abc-in-sydney, Australia, Chris Drovandi, Sydney on July 24, 2014 by xi'an*[Here is a second guest post on the *ABC in Sydney* workshop, written by Chris Drovandi]*

**F**irst up Dennis Prangle presented his recent work on “Lazy ABC”, which can speed up ABC by potentially abandoning model simulations early that do not look promising. Dennis introduces a continuation probability to ensure that the target distribution of the approach is still the ABC target of interest. In effect, the ABC likelihood is estimated to be 0 if early stopping is performed otherwise the usual ABC likelihood is inflated by dividing by the continuation probability, ensuring an unbiased estimator of the ABC likelihood. The drawback is that the ESS (Dennis uses importance sampling) of the lazy approach will likely be less than usual ABC for a fixed number of simulations; but this should be offset by the reduction in time required to perform said simulations. Dennis also presented some theoretical work for optimally tuning the method, which I need more time to digest.

**T**his was followed by my talk on Bayesian indirect inference methods that use a parametric auxiliary model (a slightly older version here). This paper has just been accepted by Statistical Science.

**M**orning tea was followed by my PhD student, Brenda Vo, who presented an interesting application of ABC to cell spreading experiments. Here an estimate of the diameter of the cell population was used as a summary statistic. It was noted after Brenda’s talk that this application might be a good candidate for Dennis’ Lazy ABC idea. This talk was followed by a much more theoretical presentation by Pierre del Moral on how particle filter methodologies can be adapted to the ABC setting and also a general framework for particle methods.

**F**ollowing lunch, Guilherme Rodrigues presented a hierarchical Gaussian Process model for kernel density estimation in the presence of different subgroups. Unfortunately my (lack of) knowledge on non-parametric methods prevents me from making any further comment except that the model looked very interesting and ABC seemed a good candidate for calibrating the model. I look forward to the paper appearing on-line.

**T**he next presentation was by Gael Martin who spoke about her research on using ABC for estimation of complex state space models. This was probably my favourite talk of the day, and not only because it is very close to my research interests. Here the score of the Euler discretised approximation of the generative model was used as summary statistics for ABC. From what I could gather, it was demonstrated that the ABC posterior based on the score or the MLE of the auxiliary model were the same in the limit as ε 0 (unless I have mis-interpreted). This is a very useful result in itself; using the score to avoid an optimisation required for the MLE can save a lot of computation. The improved approximations of the proposed approach compared with the results that use the likelihood of the Euler discretisation were quite promising. I am certainly looking forward to this paper coming out.

**M**att Moores drew the short straw and had the final presentation on the Friday afternoon. Matt spoke about this paper (an older version is available here), of which I am now a co-author. Matt’s idea is that doing some pre-simulations across the prior space and determining a mapping between the parameter of interest and the mean and variance of the summary statistic can significantly speed up ABC for the Potts model, and potentially other ABC applications. The results of the pre-computation step are used in the main ABC algorithm, which no longer requires simulation of pseudo-data but rather a summary statistic can be simulated from the fitted auxiliary model in the pre-processing step. Whilst this approach does introduce a couple more layers of approximation, the gain in computation time was up to two orders of magnitude. The talks by Matt, Gael and myself gave a real indirect inference flavour to this year’s ABC in…