**A**s I was watching the first minutes of the 1944 under-rated Lifeboat by Alfred Hitchcock (and John Steinbeck as the script writer!), a series of objects floating by the lifeboat to convey the preliminary mutual sinking of an Allied boat and a Nazi U-boat contained a cover of the New Yorker. Which while being iconic sounds like a weird inclusion, given that this is the very first issue of the magazine, in February 1925, hardly the first thing I would carry across the Atlantic at war time! Maybe being iconic was the reason to keep this issue rather than a more recent one, another mystery about the great Hitch allusions and clues interseeded throughout his films.

## Archive for classics

## Hitch’s tricks

Posted in Books, Travel with tags Alfred Hitchcock, Atlantic ocean, Battle of the Atlantic, classics, film noir, John Steinbeck, Lifeboat, shipwreck, steamer, The New Yorker, U-boats, war convoys, WW II on November 27, 2020 by xi'an## Jeffreys priors for hypothesis testing [Bayesian reads #2]

Posted in Books, Statistics, University life with tags Arnold Zellner, Bayes factor, Bayesian tests of hypotheses, CDT, class, classics, Gaussian mixture, improper priors, Jeffreys prior, JRSSB, Kullback-Leibler divergence, Oxford, PhD course, Saint Giles cemetery, Susie Bayarri, Theory of Probability, University of Oxford on February 9, 2019 by xi'anA second (re)visit to a reference paper I gave to my OxWaSP students for the last round of this CDT joint program. Indeed, this may be my first complete read of Susie Bayarri and Gonzalo Garcia-Donato 2008 Series B paper, inspired by Jeffreys’, Zellner’s and Siow’s proposals in the Normal case. *(Disclaimer: I was not the JRSS B editor for this paper.) *Which I saw as a talk at the O’Bayes 2009 meeting in Phillie.

The paper aims at constructing formal rules for objective proper priors in testing embedded hypotheses, in the spirit of Jeffreys’ Theory of Probability “hidden gem” (Chapter 3). The proposal is based on symmetrised versions of the Kullback-Leibler divergence κ between null and alternative used in a transform like an inverse power of 1+κ. With a power large enough to make the prior proper. Eventually multiplied by a reference measure (i.e., the arbitrary choice of a dominating measure.) Can be generalised to any intrinsic loss (not to be confused with an intrinsic prior à la Berger and Pericchi!). Approximately Cauchy or Student’s t by a Taylor expansion. To be compared with Jeffreys’ original prior equal to the derivative of the atan transform of the root divergence (!). A delicate calibration by an effective sample size, lacking a general definition.

At the start the authors rightly insist on having the nuisance parameter v to differ for each model but… as we all often do they relapse back to having the “same ν” in both models for integrability reasons. Nuisance parameters make the definition of the divergence prior somewhat harder. Or somewhat arbitrary. Indeed, as in reference prior settings, the authors work first conditional on the nuisance then use a prior on ν that may be improper by the “same” argument. (Although *conditioning* is not the proper term if the marginal prior on ν is improper.)

The paper also contains an interesting case of the translated Exponential, where the prior is L¹ Student’s t with 2 degrees of freedom. And another one of mixture models albeit in the simple case of a location parameter on one component only.

## three ½ [out of 159] versions of Johnny B. Goode

Posted in Statistics with tags ACDC, Chuck Berry, classics, Jimmy Hendrix, Johnny B. Goode, rock'n roll, Sex Pistols on April 2, 2017 by xi'an

## reading classics (#1,2)

Posted in Books, Kids, Statistics, University life with tags Bernoulli distribution, classics, invariance, non-informative priors, Pitman, seminar, Université Paris Dauphine on December 4, 2014 by xi'an**T**oday was the second session of our Reading Classics Seminar for the academic year 2014-2015. I have not reported on this seminar so far because it has had starting problems, namely hardly any student present on the first classes and therefore several re-starts until we reach a small group of interested students. Actually, this is the final year for my TSI Master at Paris-Dauphine, as it will become integrated within the new MASH Master next year. The latter started this year and drew away half of our potential applicants, presumably because of the wider spectrum between machine-learning, optimisation, programming and a tiny bit of statistics… If we manage to salvage [within the new Master] our speciality of offering the only Bayesian Statistics training in France, this will not be a complete disaster!

Anyway, the first seminar was about the great 1939 Biometrika paper by Pitman about the best invariant estimator appearing magically as a Bayes estimator! Alas, the student did not grasp the invariance part and hence focussed on less relevant technical parts, which was not a great experience (and therefore led me to abstain from posting the slides here). The second paper was *not* on my list but was proposed by another student as of yesterday when he realised he was to present today! This paper, entitled “The Counter-intuitive Non-informative Prior for the Bernoulli Family”, was published in the Journal of Statistics Education in 2004 by Zu and Liu, I had not heard of the paper (or of the journal) previously and I do not think it is worth advertising any further as it gives a very poor entry to non-informative priors in the simplest of settings, namely for Bernoulli B(p) observations. Indeed, the stance of the paper is to define a non-informative prior as one returning the MLE of p as its posterior expectation (missing altogether the facts that such a definition is parameterisation-invariant and that, given the modal nature of the MLE, a posterior mode would be much more appropriate, leading to the uniform prior of p as a solution) and that the corresponding prior was made of two Dirac masses at 0 and 1! Which again misses several key points like defining properly convergence in a space of probability distributions and using an improper prior *differently* from a proper prior. Esp. since in the next section, the authors switch to Haldane’s prior being the Be(0,0) distribution..! A prior that cannot be used since the posterior is not defined when all the observations are identical. Certainly *not* a paper to make it to *the* list! *(My student simply pasted pages from this paper as his slides and so I see again no point in reposting them here. )*