## Save the kids

Posted in Statistics with tags , , , , , , , , , on November 19, 2019 by xi'an

## 30 years later… [30年后]

Posted in pictures with tags , , , , , , , , , on June 4, 2019 by xi'an

## along Avenue Karl Marx [jatp]

Posted in Statistics with tags , , , , , , , on May 29, 2019 by xi'an

## the beauty of maths in computer science [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , on January 17, 2019 by xi'an

CRC Press sent me this book for review in CHANCE: Written by Jun Wu, “staff research scientist in Google who invented Google’s Chinese, Japanese, and Korean Web search algorithms”, and translated from the Chinese, 数学之美, originating from Google blog entries. (Meaning most references are pre-2010.) A large part of the book is about word processing and web navigation, which is the author’s research specialty. And not so much about mathematics. (When rereading the first chapters to start this review I then realised why the part about language processing in AIQ sounded familiar: I had read it in the Beauty of Mathematics in Computer Science.)

In the first chapter, about the history of languages, I found out, among other things, that ancient Jewish copists of the Bible had an error correcting algorithm consisting in giving each character a numerical equivalent, summing up each row, then all rows, and  checking the sum at the end of the page was the original one. The second chapter explains why the early attempts at language computer processing, based on grammar rules, were unsuccessful and how a statistical approach had broken the blockade. Explained via Markov chains in the following chapter. Along with the Good-Turing [Bayesian] estimate of the transition probabilities. Next comes a short and low-tech chapter on word segmentation. And then an introduction to hidden Markov models. Mentioning the Baum-Welch algorithm as a special case of EM, which makes a return by Chapter 26. Plus a chapter on entropies and Kullback-Leibler divergence.

A first intermede is provided by a chapter dedicated to the late Frederick Jelinek, the author’s mentor (including what I find a rather unfortunate equivalent drawn between the Nazi and Communist eras in Czechoslovakia, p.64). Chapter that sounds a wee bit too much like an extended obituary.

The next section of chapters is about search engines, with a few pages on Boolean logic, dynamic programming, graph theory, Google’s PageRank and TF-IDF (term frequency/inverse document frequency). Unsurprisingly, given that the entries were originally written for Google’s blog, Google’s tools and concepts keep popping throughout the entire book.

Another intermede about Amit Singhal, the designer of Google’s internal search ranking system, Ascorer. With another unfortunate equivalent with the AK-47 Kalashnikov rifle as “elegantly simple”, “effective, reliable, uncomplicated, and easy to implement or operate” (p.105). Even though I do get the (reason for the) analogy, using an equivalent tool which purpose is not to kill other people would have been just decent…

Then chapters on measuring proximity between news articles by (vectors in a 64,000 dimension vocabulary space and) their angle, and singular value decomposition, and turning URLs as long integers into 16 bytes random numbers by the Mersenne Twister (why random, except for encryption?), missing both the square in von Neumann’s first PRNG (p.124) and the opportunity to link the probability of overlap with the birthday problem (p.129). Followed by another chapter on cryptography, always a favourite in maths vulgarisation books (but with no mention made of the originators of public key cryptography, like James Hellis or the RSA trio, or of the impact of quantum computers on the reliability of these methods). And by an a-mathematic chapter on spam detection.

Another sequence of chapters cover maximum entropy models (in a rather incomprehensible way, I think, see p.159), continued with an interesting argument how Shannon’s first theorem predicts that it should be faster to type Chinese characters than Roman characters. Followed by the Bloom filter, which operates as an approximate Poisson variate. Then Bayesian networks where the “probability of any node is computed by Bayes’ formula” [not really]. With a slightly more advanced discussion on providing the highest posterior probability network. And conditional random fields, where the conditioning is not clearly discussed (p.192). Next are chapters about Viterbi’s algorithm (and successful career) and the EM algorithm, nicknamed “God’s algorithm” in the book (Chapter 26) although I never heard of this nickname previously.

The final two chapters are on neural networks and Big Data, clearly written later than the rest of the book, with the predictable illustration of AlphaGo (but without technical details). The twenty page chapter on Big Data does not contain a larger amount of mathematics, with no equation apart from Chebyshev’s inequality, and a frequency estimate for a conditional probability. But I learned about 23&me running genetic tests at a loss to build a huge (if biased) genetic database. (The bias in “Big Data” issues is actually not covered by this chapter.)

“One of my main objectives for writing the book is to introduce some mathematical knowledge related to the IT industry to people who do not work in the industry.”

To conclude, I found the book a fairly interesting insight on the vision of his field and job experience by a senior scientist at Google, with loads of anecdotes and some historical backgrounds, but very Google-centric and what I felt like an excessive amount of name dropping and of I did, I solved, I &tc. The title is rather misleading in my opinion as the amount of maths is very limited and rarely sufficient to connect with the subject at hand. Although this is quite a relative concept, I did not spot beauty therein but rather technical advances and trick, allowing the author and Google to beat the competition.

## une vie brève [book review]

Posted in Books, Kids, pictures, University life with tags , , , , , , , on April 30, 2016 by xi'an

This short book is about the equally short life (une vie brève) of the young mathematician Maurice Audin, killed or executed by French special forces (Massu’s paratroopers) in Algiers during the Algerian liberation war. Maurice Audin was 25 when he died and the circumstances of his death remain unknown, since the French army never acknowledged this death and never returned his body to his family, but he presumably died under torture. He was a member of the Algerian communist party which had then been outlawed by the French authorities for supporting Algerian independence. Maurice Audin was arrested on June 11, 1957 for hiding a fugitive and he died in the following days… The book is written by his daughter, Michèle Audin, also a mathematician, and a writer of several novels around mathematics and mathematicians. It does not dwell on the death since so little is known but rather reconstructs the life of Maurice Audin from bits and pieces, family memories, school archives, a few pictures, some grocery bills of the Audin family… The style of Michèle Audin is quite peculiar, almost like written thoughts or half-thoughts at times, with a sort of surgical distanciation that makes the book both strong and touching. Maurice Audin wrote several papers in les Comptes Rendus de l’Académie des Sciences [the French PNAS] but did not live long enough to defend his thesis, which was presented by Laurent Schwartz the following year and defended in absentia… The French State never acknowledged its responsability in Audin’s death. (Another book on this death is L’Affaire Audin by the historian Pierre-Vidal Naquet, which appeared in 1958.)