Another X validated question that proved a bit of a challenge, enough for my returning to its resolution on consecutive days. The question was about the completeness of the natural sufficient statistic associated with a sample from the shifted exponential distribution
[weirdly called negative exponential in the question] meaning the (minimal) sufficient statistic is made of the first order statistic and of the sample sum (or average), or equivalently
Finding the joint distribution of T is rather straightforward as the first component is a drifted Exponential again and the second a Gamma variate with n-2 degrees of freedom and the scale θ². (Devroye’s Bible can be invoked since the Gamma distribution follows from his section on Exponential spacings, p.211.) While the derivation of a function with constant expectation is straightforward for the alternate exponential distribution
since the ratio of the components of T has a fixed distribution, it proved harder for the current case as I was seeking a parameter free transform. When attempting to explain the difficulty on my office board, I realised I was seeking the wrong property since an expectation was enough. Removing the dependence on θ was simpler and led to
but one version of a transform with fixed expectation. This also led me to wonder at the range of possible functions of θ one could use as scale and still retrieve incompleteness of T. Any power of θ should work but what about exp(θ²) or sin²(θ³), i.e. functions for which there exists no unbiased estimator..?