Archive for computational statistics

Rao-Blackwellisation, a review in the making

Posted in Statistics with tags , , , , , , , , , , on March 17, 2020 by xi'an

Recently, I have been contacted by a mainstream statistics journal to write a review of Rao-Blackwellisation techniques in computational statistics, in connection with an issue celebrating C.R. Rao’s 100th birthday. As many many techniques can be interpreted as weak forms of Rao-Blackwellisation, as e.g. all auxiliary variable approaches, I am clearly facing an abundance of riches and would thus welcome suggestions from Og’s readers on the major advances in Monte Carlo methods that can be connected with the Rao-Blackwell-Kolmogorov theorem. (On the personal and anecdotal side, I only met C.R. Rao once, in 1988, when he came for a seminar at Purdue University where I was spending the year.)

MCMC, with common misunderstandings

Posted in Books, pictures, R, Statistics, University life with tags , , , , , , , , , , , , on January 27, 2020 by xi'an

As I was asked to write a chapter on MCMC methods for an incoming Handbook of Computational Statistics and Data Science, published by Wiley, rather than cautiously declining!, I decided to recycle the answers I wrote on X validated to what I considered to be the most characteristic misunderstandings about MCMC and other computing methods, using as background the introduction produced by Wu Changye in his PhD thesis. Waiting for the opinion of the editors of the Handbook on this Q&A style. The outcome is certainly lighter than other recent surveys like the one we wrote with Peter Green, Krys Latuszinski, and Marcelo Pereyra, for Statistics and Computing, or the one with Victor Elvira, Nick Tawn, and Changye Wu.

probabilistic methods in computational statistics [workshop]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , on November 5, 2019 by xi'an

A  one-day workshop is organised at Telecom Sudparis, Évry, on 22 November by R. Douc, F. Portier and F. Roueff. On the “hot topics” concerned with probabilistic methods in computational statistics. The workshop is funded by the project “Big-Pomm”, which strengthens the links between LTCI (Telecom Paristech) and SAMOVAR (Telecom Sudparis) around research projects implying partially observed Markov models. The participation to the workshop is free but registration is required for having access to the lunch buffet (40 participants max). (Évry is located 20km south of Paris, with trains on the RER C line.)

PhD studenships at Warwick

Posted in Kids, pictures, Statistics, University life with tags , , , , , , , , on May 2, 2019 by xi'an


There is an exciting opening for several PhD positions at Warwick, in the departments of Statistics and of Mathematics, as part of the Centre for Doctoral Training in Mathematics and Statistics newly created by the University. CDT studentships are funded for four years and funding is open to students from the European Union without restrictions. (No Brexit!) Funding includes a stipend at UK/RI rates and tuition fees at UK/EU rates. Applications are made via the University of Warwick Online Application Portal and should be made  as quickly as possible since the funding will be allocated on a first come first serve basis. For more details, contact the CDT director, Martyn Plummer. I cannot but strongly encourage interested students to apply as this is a great opportunity to start a research career in a fantastic department!

computational statistics and molecular simulation [18w5023]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on November 19, 2018 by xi'an

The last day of the X fertilisation workshop at the casa matematicà Oaxaca, there were only three talks and only half of the participants. I lost the subtleties of the first talk by Andrea Agazzi on large deviations for chemical reactions, due to an emergency at work (Warwick). The second talk by Igor Barahona was somewhat disconnected from the rest of the conference, working on document textual analysis by way of algebraic data analysis (analyse des données) methods à la Benzécri. (Who was my office neighbour at Jussieu in the early 1990s.) In the last and final talk, Eric Vanden-Eijden made a link between importance sampling and PDMP, as an integral can be expressed via a trajectory of a path. A generalisation of path sampling, for almost any ODE. But also a competitor to nested sampling, waiting for the path to reach an Hamiltonian level, without some of the difficulties plaguing nested sampling like resampling. And involving continuous time processes. (Is there a continuous time version of ABC as well?!) Returning unbiased estimators of mean (the original integral) and variance. Example of a mixture example in dimension d=10 with k=50 components using only 100 paths.