Archive for confidence sets

a neat (theoretical) Monte Carlo result

Posted in Books, Statistics, University life with tags , , , , on December 19, 2014 by xi'an

Mark Huber just arXived a short paper where he develops a Monte Carlo approach that bounds the probability of large errors

\mathbb{P}(|\hat\mu_t-\mu|>\epsilon\mu) < 1/\delta

by computing a lower bound on the sample size r and I wondered at the presence of μ in the bound as it indicates the approach is not translation invariant. One reason is that the standard deviation of the simulated random variables is bounded by cμ. Another reason is that Mark uses as its estimator the median

\text{med}(S_1R_1,\ldots,S_tR_t)

where the S’s are partial averages of sufficient length and the R’s are independent uniforms over (1-ε,1+ε): using those uniforms may improve the coverage of given intervals but it also means that the absolute scale of the error is multiplied by the scale of S, namely μ. I first thought that some a posteriori recentering could improve the bound but since this does not impact the variance of the simulated random variables, I doubt it is possible.

checking ABC convergence via coverage

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , on January 24, 2013 by xi'an

"the" cormorant tree, sunset, Lake Alice, Gainesville, Florida, Jan. 19, 2013Dennis Prangle, Michael Blum, G. Popovic and Scott Sisson just arXived a paper on diagnostics for ABC validation via coverage diagnostics. Getting valid approximation diagnostics for ABC is clearly and badly needed and this was the last slide of my talk yesterday at the Winter Workshop in Gainesville. When simulation time is not an issue (!), our DIYABC software does implement a limited coverage assessment by computing the type I error, i.e. by simulating data under the null model and evaluating the number of time it is rejected at the 5% level (see sections 2.11.3 and 3.8 in the documentation). The current paper builds on a similar perspective.

The idea in the paper is that a (Bayesian) credible interval at a given credible level α should have a similar confidence level (at least asymptotically and even more for matching priors) and that simulating pseudo-data with a known parameter value allows for a Monte-Carlo evaluation of the credible interval “true” coverage, hence for a calibration of the tolerance. The delicate issue is about the generation of those “known” parameters. For instance, if the pair (θ, y) is generated from the joint distribution prior x likelihood, and if the credible region is also based on the true posterior, the average coverage is the nominal one. On the other hand, if the credible interval is based on a poor (ABC) approximation to the posterior, the average coverage should differ from the nominal one. Given that ABC is always wrong, however, this may fail to be a powerful diagnostic. In particular, when using insufficient (summary) statistics, the discrepancy should make testing for uniformity harder, shouldn’t it?  Continue reading