This week, I gave a short and introductory course in Warwick for the CDT (PhD) students on my perceived connections between reverse logistic regression à la Geyer and GANS, among other things. The first attempt was cancelled in 2020 due to the pandemic, the second one in 2021 was on-line and thus offered little possibilities for interactions. Preparing for this third attempt made me read more papers on some statistical analyses of GANs and WGANs, which was more satisfactory [for me] even though I could not get into the technical details…
Archive for consistency
online approximate Bayesian learning
Posted in Statistics with tags AMIS, approximate MCMC, Bayesian learning, consistency, convergence, ibis, sequential Monte Carlo, state space model on September 25, 2020 by xi'anMy friends and coauthors Matthieu Gerber and Randal Douc have just arXived a massive paper on online approximate Bayesian learning, namely the handling of the posterior distribution on the parameters of a state-space model, which remains a challenge to this day… Starting from the iterated batch importance sampling (IBIS) algorithm of Nicolas (Chopin, 2002) which he introduced in his PhD thesis. The online (“by online we mean that the memory and computational requirement to process each observation is finite and bounded uniformly in t”) method they construct is guaranteed for the approximate posterior to converge to the (pseudo-)true value of the parameter as the sample size grows to infinity, where the sequence of approximations is a Cesaro mixture of initial approximations with Gaussian or t priors, AMIS like. (I am somewhat uncertain about the notion of a sequence of priors used in this setup. Another funny feature is the necessity to consider a fat tail t prior from time to time in this sequence!) The sequence is in turn approximated by a particle filter. The computational cost of this IBIS is roughly in O(NT), depending on the regeneration rate.
prior against truth!
Posted in Books, Kids, Statistics with tags admissibility, Bayesian estimation, Bill Strawderman, consistency, cross validated, George Casella, minimaxity, support on June 4, 2018 by xi'anA question from X validated had interesting ramifications, about what happens when the prior does not cover the true value of the parameter (assuming there ? In fact, not so much in that, from a decision theoretic perspective, the fact that that π(θ⁰)=0, or even that π(θ)=0 in a neighbourhood of θ⁰ does not matter [too much]. Indeed, the formal derivation of a Bayes estimator as minimising the posterior loss means that the resulting estimator may take values that were “impossible” from a prior perspective! Indeed, taking for example the posterior mean, the convex combination of all possible values of θ under π may well escape the support of π when this support is not convex. Of course, one could argue that estimators should further be restricted to be possible values of θ under π but that would reduce their decision theoretic efficiency.
An example is the brilliant minimaxity result by George Casella and Bill Strawderman from 1981: when estimating a Normal mean μ based on a single observation xwith the additional constraint that |μ|<ρ, and when ρ is small enough, ρ≤1.0567 quite specifically, the minimax estimator for this problem under squared error loss corresponds to a (least favourable) uniform prior on the pair {−ρ,ρ}, meaning that π gives equal weight to −ρ and ρ (and none to any other value of the mean μ). When ρ increases above this bound, the least favourable prior sees its support growing one point at a time, but remaining a finite set of possible values. However the posterior expectation, 𝔼[μ|x], can take any value on (−ρ,ρ).
In an even broader suspension of belief (in the prior), it may be that the prior has such a restricted support that it cannot consistently estimate the (true value of the) parameter, but the associated estimator may remain admissible or minimax.
the Hyvärinen score is back
Posted in pictures, Statistics, Travel with tags Bayes factor, Bayesian model comparison, Bayesian model selection, consistency, Harvard University, Hyvärinen score, Lévy diffusion process, logarithmic score, Padova, penalisation, prior predictive, sequential Monte Carlo, SMC, SMC² on November 21, 2017 by xi'anStéphane Shao, Pierre Jacob and co-authors from Harvard have just posted on arXiv a new paper on Bayesian model comparison using the Hyvärinen score
which thus uses the Laplacian as a natural and normalisation-free penalisation for the score test. (Score that I first met in Padova, a few weeks before moving from X to IX.) Which brings a decision-theoretic alternative to the Bayes factor and which delivers a coherent answer when using improper priors. Thus a very appealing proposal in my (biased) opinion! The paper is mostly computational in that it proposes SMC and SMC² solutions to handle the estimation of the Hyvärinen score for models with tractable likelihoods and tractable completed likelihoods, respectively. (Reminding me that Pierre worked on SMC² algorithms quite early during his Ph.D. thesis.)
A most interesting remark in the paper is to recall that the Hyvärinen score associated with a generic model on a series must be the prequential (predictive) version
rather than the version on the joint marginal density of the whole series. (Followed by a remark within the remark that the logarithm scoring rule does not make for this distinction. And I had to write down the cascading representation
to convince myself that this unnatural decomposition, where the posterior on θ varies on each terms, is true!) For consistency reasons.
This prequential decomposition is however a plus in terms of computation when resorting to sequential Monte Carlo. Since each time step produces an evaluation of the associated marginal. In the case of state space models, another decomposition of the authors, based on measurement densities and partial conditional expectations of the latent states allows for another (SMC²) approximation. The paper also establishes that for non-nested models, the Hyvärinen score as a model selection tool asymptotically selects the closest model to the data generating process. For the divergence induced by the score. Even for state-space models, under some technical assumptions. From this asymptotic perspective, the paper exhibits an example where the Bayes factor and the Hyvärinen factor disagree, even asymptotically in the number of observations, about which mis-specified model to select. And last but not least the authors propose and assess a discrete alternative relying on finite differences instead of derivatives. Which remains a proper scoring rule.
I am quite excited by this work (call me biased!) and I hope it can induce following works as a viable alternative to Bayes factors, if only for being more robust to the [unspecified] impact of the prior tails. As in the above picture where some realisations of the SMC² output and of the sequential decision process see the wrong model being almost acceptable for quite a long while…
repulsive mixtures
Posted in Books, Statistics with tags consistency, Dirichlet mixture priors, finite mixtures, Gibbs sampling, Larry Wasserman, repulsiveness, reversible jump MCMC, tequila, unknown number of components on April 10, 2017 by xi'anFangzheng Xie and Yanxun Xu arXived today a paper on Bayesian repulsive modelling for mixtures. Not that Bayesian modelling is repulsive in any psychological sense, but rather that the components of the mixture are repulsive one against another. The device towards this repulsiveness is to add a penalty term to the original prior such that close means are penalised. (In the spirit of the sugar loaf with water drops represented on the cover of Bayesian Choice that we used in our pinball sampler, repulsiveness being there on the particles of a simulated sample and not on components.) Which means a prior assumption that close covariance matrices are of lesser importance. An interrogation I
have has is was why empty components are not excluded as well, but this does not make too much sense in the Dirichlet process formulation of the current paper. And in the finite mixture version the Dirichlet prior on the weights has coefficients less than one.
The paper establishes consistency results for such repulsive priors, both for estimating the distribution itself and the number of components, K, under a collection of assumptions on the distribution, prior, and repulsiveness factors. While I have no mathematical issue with such results, I always wonder at their relevance for a given finite sample from a finite mixture in that they give an impression that the number of components is a perfectly estimable quantity, which it is not (in my opinion!) because of the fluid nature of mixture components and therefore the inevitable impact of prior modelling. (As Larry Wasserman would pound in, mixtures like tequila are evil and should likewise be avoided!)
The implementation of this modelling goes through a “block-collapsed” Gibbs sampler that exploits the latent variable representation (as in our early mixture paper with Jean Diebolt). Which includes the Old Faithful data as an illustration (for which a submission of ours was recently rejected for using too old datasets). And use the logarithm of the conditional predictive ordinate as an assessment tool, which is a posterior predictive estimated by MCMC, using the data a second time for the fit.