Archive for convolution

Gauss to Laplace transmutation interpreted

Posted in Books, Kids, Statistics, University life with tags , , , , , , on November 9, 2015 by xi'an

Following my earlier post [induced by browsing X validated], on the strange property that the product of a Normal variate by an Exponential variate is a Laplace variate, I got contacted by Peng Ding from UC Berkeley, who showed me how to derive the result by a mere algebraic transform, related with the decomposition

(X+Y)(X-Y)=X²-Y² ~ 2XY

when X,Y are iid Normal N(0,1). Peng Ding and Joseph Blitzstein have now arXived a note detailing this derivation, along with another derivation using the moment generating function. As a coincidence, I also came across another interesting representation on X validated, namely that, when X and Y are Normal N(0,1) variates with correlation ρ,

XY ~ R(cos(πU)+ρ)

with R Exponential and U Uniform (0,1). As shown by the OP of that question, it is a direct consequence of the decomposition of (X+Y)(X-Y) and of the polar or Box-Muller representation. This does not lead to a standard distribution of course, but remains a nice representation of the product of two Normals.

Gauss to Laplace transmutation!

Posted in Books, Kids, Statistics, University life with tags , , , , on October 14, 2015 by xi'an

When browsing X validated the other day [translate by procrastinating!], I came upon the strange property that the marginal distribution of a zero mean normal variate with exponential variance is a Laplace distribution. I first thought there was a mistake since we usually take an inverse Gamma on the variance parameter, not a Gamma. But then the marginal is a t distribution. The result is curious and can be expressed in a variety of ways:

– the product of a χ21 and of a χ2 is a χ22;
– the determinant of a 2×2 normal matrix is a Laplace variate;
– a difference of exponentials is Laplace…

The OP was asking for a direct proof of the result and I eventually sorted it out by a series of changes of variables, although there exists a much more elegant and general proof by Mike West, then at the University of Warwick, based on characteristic functions (or Fourier transforms). It reminded me that continuous, unimodal [at zero] and symmetric densities were necessary scale mixtures [a wee misnomer] of Gaussians. Mike proves in this paper that exponential power densities [including both the Normal and the Laplace cases] correspond to the variances having an inverse positive stable distribution with half the power. And this is a straightforward consequence of the exponential power density being proportional to the Fourier transform of a stable distribution and of a Fubini inversion. (Incidentally, the processing times of Biometrika were not that impressive at the time, with a 2-page paper submitted in Dec. 1984 published in Sept. 1987!)

This is a very nice and general derivation, but I still miss the intuition as to why it happens that way. But then, I know nothing, and even less about products of random variates!