Archive for copulas

Approximate Bayesian analysis of (un)conditional copulas [webinar]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , on September 17, 2020 by xi'an

The Algorithms & Computationally Intensive Inference seminar (access by request) will virtually resume this week in Warwick U on Friday, 18 Sept., at noon (UK time, ie +1GMT) with a talk by (my coauthor and former PhD student) Clara Grazian (now at UNSW), talking about approximate Bayes for copulas:

Many proposals are now available to model complex data, in particular thanks to the recent advances in computational methodologies and algorithms which allow to work with complicated likelihood function in a reasonable amount of time. However, it is, in general, difficult to analyse data characterized by complicated forms of dependence. Copula models have been introduced as probabilistic tools to describe a multivariate random vector via the marginal distributions and a copula function which captures the dependence structure among the vector components, thanks to the Sklar’s theorem, which states that any d-dimensional absolutely continuous density can be uniquely represented as the product of the marginal distributions and the copula function. Major areas of application include econometrics, hydrological engineering, biomedical science, signal processing and finance. Bayesian methods to analyse copula models tend to be computational intensive or to rely on the choice of a particular copula function, in particular because methods of model selection are not yet fully developed in this setting. We will present a general method to estimate some specific quantities of interest of a generic copula by adopting an approximate Bayesian approach based on an approximation of the likelihood function. Our approach is general, in the sense that it could be adapted both to parametric and nonparametric modelling of the marginal distributions and can be generalised in presence of covariates. It also allow to avoid the definition of the copula function. The class of algorithms proposed allows the researcher to model the joint distribution of a random vector in two separate steps: first the marginal distributions and, then, a copula function which captures the dependence structure among the vector components.


Christian Robert is giving a talk in Jussieu tomorrow

Posted in Statistics, University life with tags , , , , , , , on September 26, 2019 by xi'an

My namesake Christian (Yann) Robert (CREST) is giving a seminar tomorrow in Jussieu (Université Pierre & Marie Curie, couloir 16-26, salle 209), between 2 and 3, on composite likelihood estimation method for hierarchical Archimedean copulas defined with multivariate compound distributions. Here is the abstract:

We consider the family of hierarchical Archimedean copulas obtained from multivariate exponential mixture distributions through compounding, as introduced by Cossette et al. (2017). We investigate ways of determining the structure of these copulas and estimating their parameters. An agglomerative clustering technique based on the matrix of Spearman’s rhos, combined with a bootstrap procedure, is used to identify the tree structure. Parameters are estimated through a top-down composite likelihood. The validity of the approach is illustrated through two simulation studies in which the procedure is explained step by step. The composite likelihood method is also compared to the full likelihood method in a simple case where the latter is computable.

impressions from EcoSta2017 [guest post]

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , on July 6, 2017 by xi'an

[This is a guest post on the recent EcoSta2017 (Econometrics and Statistics) conference in Hong Kong, contributed by Chris Drovandi from QUT, Brisbane.]

There were (at least) two sessions on Bayesian Computation at the recent EcoSta (Econometrics and Statistics) 2017 conference in Hong Kong. Below is my review of them. My overall impression of the conference is that there were lots of interesting talks, albeit a lot in financial time series, not my area. Even so I managed to pick up a few ideas/concepts that could be useful in my research. One criticism I had was that there were too many sessions in parallel, which made choosing quite difficult and some sessions very poorly attended. Another criticism of many participants I spoke to was that the location of the conference was relatively far from the city area.

In the first session (chaired by Robert Kohn), Minh-Ngoc Tran spoke about this paper on Bayesian estimation of high-dimensional Copula models with mixed discrete/continuous margins. Copula models with all continuous margins are relatively easy to deal with, but when the margins are discrete or mixed there are issues with computing the likelihood. The main idea of the paper is to re-write the intractable likelihood as an integral over a hypercube of ≤J dimensions (where J is the number of variables), which can then be estimated unbiasedly (with variance reduction by using randomised quasi-MC numbers). The paper develops advanced (correlated) pseudo-marginal and variational Bayes methods for inference.

In the following talk, Chris Carter spoke about different types of pseudo-marginal methods, particle marginal Metropolis-Hastings and particle Gibbs for state space models. Chris suggests that a combination of these methods into a single algorithm can further improve mixing. Continue reading

postprocessing for ABC

Posted in Books, Statistics with tags , , , , on June 1, 2017 by xi'an

Two weeks ago, G.S. Rodrigues, Dennis Prangle and Scott Sisson have recently arXived a paper on recalibrating ABC output to make it correctly calibrated (in the frequentist sense). As in earlier papers, it takes advantage of the fact that the tail posterior probability should be uniformly distributed at the true value of the [simulated] parameter behind the [simulated] data. And as in Prangle et al. (2014), relies on a copula representation. The main notion is that marginals posteriors can be reasonably approximated by non-parametric kernel estimators, which means that an F⁰oF⁻¹ transform can be applied to an ABC reference table in a fully non-parametric extension of Beaumont et al.  (2002). Besides the issue that F is an approximation, I wonder about the computing cost of this approach, given that computing the post-processing transforms comes at a cost of O(pT²) when p is the dimension of the parameter and T the size of the ABC learning set… One question that came to me while discussing the paper with Jean-Michel Marin is why one would use F⁻¹(θ¹|s) instead of directly a uniform U(0,1) since in theory this should be a uniform U(0,1).

MCqMC 2016 [#2]

Posted in pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , on August 17, 2016 by xi'an

In her plenary talk this morning, Christine Lemieux discussed connections between quasi-Monte Carlo and copulas, covering a question I have been considering for a while. Namely, when provided with a (multivariate) joint cdf F, is there a generic way to invert a vector of uniforms [or quasi-uniforms] into a simulation from F? For Archimedian copulas (as we always can get back to copulas), there is a resolution by the Marshall-Olkin representation,  but this puts a restriction on the distributions F that can be considered. The session on synthetic likelihoods [as introduced by Simon Wood in 2010] put together by Scott Sisson was completely focussed on using normal approximations for the distribution of the vector of summary statistics, rather than the standard ABC non-parametric approximation. While there is a clear (?) advantage in using a normal pseudo-likelihood, since it stabilises with much less simulations than a non-parametric version, I find it difficult to compare both approaches, as they lead to different posterior distributions. In particular, I wonder at the impact of the dimension of the summary statistics on the approximation, in the sense that it is less and less likely that the joint is normal as this dimension increases. Whether this is damaging for the resulting inference is another issue, possibly handled by a supplementary ABC step that would take the first-step estimate as summary statistic. (As a side remark, I am intrigued at everyone being so concerned with unbiasedness of methods that are approximations with no assessment of the amount of approximation!) The last session of the day was about multimodality and MCMC solutions, with talks by Hyungsuk Tak, Pierre Jacob and Babak Shababa, plus mine. Hunsuk presented the RAM algorithm I discussed earlier under the title of “love-hate” algorithm, which was a kind reference to my post! (I remain puzzled by the ability of the algorithm to jump to another mode, given that the intermediary step aims at a low or even zero probability region with an infinite mass target.) And Pierre talked about using SMC for Wang-Landau algorithms, with a twist to the classical stochastic optimisation schedule that preserves convergence. And a terrific illustration on a distribution inspired from the Golden Gate Bridge that reminded me of my recent crossing! The discussion around my folded Markov chain talk focussed on the extension of the partition to more than two sets, the difficulty being in generating automated projections, with comments about connections with computer graphic tools. (Too bad that the parallel session saw talks by Mark Huber and Rémi Bardenet that I missed! Enjoying a terrific Burmese dinner with Rémi, Pierre and other friends also meant I could not post this entry on time for the customary 00:16. Not that it matters in the least…)