Archive for court

let the evidence speak [book review]

Posted in Books, Kids, Statistics with tags , , , , , , , , , , on December 17, 2018 by xi'an

This book by Alan Jessop, professor at the Durham University Business School,  aims at presenting Bayesian ideas and methods towards decision making “without formula because they are not necessary; the ability to add and multiply is all that is needed.” The trick is in using a Bayes grid, in other words a two by two table. (There are a few formulas that survived the slaughter, see e.g. on p. 91 the formula for the entropy. Contained in the chapter on information that I find definitely unclear.) When leaving the 2×2 world, things become more complicated and the construction of a prior belief as a probability density gets heroic without the availability of maths formulas. The first part of the paper is about Likelihood, albeit not the likelihood function, despite having the general rule that (p.73)

belief is proportional to base rate x likelihood

which is the book‘s version of Bayes’ (base?!) theorem. It then goes on to discuss the less structure nature of prior (or prior beliefs) against likelihood by describing Tony O’Hagan’s way of scaling experts’ beliefs in terms of a Beta distribution. And mentioning Jaynes’ maximum entropy prior without a single formula. What is hard to fathom from the text is how can one derive the likelihood outside surveys. (Using the illustration of 1963 Oswald’s murder by Ruby in the likelihood chapter does not particularly help!) A bit of nitpicking at this stage: the sentence

“The ancient Greeks, and before them the Chinese and the Aztecs…”

is historically incorrect since, while the Chinese empire dates back before the Greek dark ages, the Aztecs only rule Mexico from the 14th century (AD) until the Spaniard invasion. While most of the book sticks with unidimensional parameters, it also discusses more complex structures, for which it relies on Monte Carlo, although the description is rather cryptic (use your spreadsheet!, p.133). The book at this stage turns into a more story-telling mode, by considering for instance the Federalist papers analysis by Mosteller and Wallace. The reader can only follow the process of assessing a document authorship for a single word, as multidimensional cases (for either data or parameters) are out of reach. The same comment applies to the ecology, archeology, and psychology chapters that follow. The intermediary chapter on the “grossly misleading” [Court wording] of the statistical evidence in the Sally Clark prosecution is more accessible in that (again) it relies on a single number. Returning to the ban of Bayes rule in British courts:

In the light of the strong criticism by this court in the 1990s of using Bayes theorem before the jury in cases where there was no reliable statistical evidence, the practice of using a Bayesian approach and likelihood ratios to formulate opinions placed before a jury without that process being disclosed and debated in court is contrary to principles of open justice.

the discussion found in the book is quite moderate and inclusive, in that a Bayesian analysis helps in gathering evidence about a case, but may be misunderstood or misused at the [non-Bayesian] decision level.

In conclusion, Let the Evidence Speak is an interesting introduction to Bayesian thinking, through a simplifying device, the Bayes grid, which seems to come from management, with a large number of examples, if not necessarily all realistic and some side-stories. I doubt this exposure can produce expert practitioners, but it makes for an worthwhile awakening for someone “likely to have read this book because [one] had heard of Bayes but were uncertain what is was” (p.222). With commendable caution and warnings along the way.

The case of Lucia de Berk

Posted in Statistics, University life with tags , , , , on September 8, 2010 by xi'an

The posting of a paper by Richard Gill, Piet Groeneboom, and Peter de Jong on arXiv today reminded me of a conference of Richard Gill in Ottawa two years ago where he vehemently defended the Dutch nurse Lucia de Berk. (She has been exonerated from all murder accusation this year, after spending several years in jail.) The current paper gives a very simple explanation of the lack of strong (statistical) evidence against this nurse, which makes the earlier conviction based solely on statistical arguments the more puzzling. (As in earlier cases, the fact that the statistical arguments were delivered by a non-statistician is also very surprising, This shows that judges should both get some basic training in Statistics, rather than considering forbidding statistical argument in court, which I think also is the position of the French courts, and that they should involve statisticians as experts.)