Archive for cross validated

deterministic moves in Metropolis-Hastings

Posted in Books, Kids, R, Statistics with tags , , , , , , , , on July 10, 2020 by xi'an

A curio on X validated where an hybrid Metropolis-Hastings scheme involves a deterministic transform, once in a while. The idea is to flip the sample from one mode, ν, towards the other mode, μ, with a symmetry of the kind

μ-α(x+μ) and ν-α(x+ν)

with α a positive coefficient. Or the reciprocal,

-μ+(μ-x)/α and -ν+(ν-x)/α

for… reversibility reasons. In that case, the acceptance probability is simply the Jacobian of the transform to the proposal, just as in reversible jump MCMC.

Why the (annoying) Jacobian? As explained in the above slides (and other references), the Jacobian is there to account for the change of measure induced by the transform.

Returning to the curio, the originator of the question had spotted some discrepancy between the target and the MCMC sample, as the moments did not fit well enough. For a similar toy model, a balanced Normal mixture, and an artificial flip consisting of

x’=±1-x/2 or x’=±2-2x

implemented by

  u=runif(5)
  if(u[1]<.5){
    mhp=mh[t-1]+2*u[2]-1
    mh[t]=ifelse(u[3]<gnorm(mhp)/gnorm(mh[t-1]),mhp,mh[t-1])
  }else{
    dx=1+(u[4]<.5)
    mhp=ifelse(dx==1,
               ifelse(mh[t-1]<0,1,-1)-mh[t-1]/2,
               2*ifelse(mh[t-1]<0,-1,1)-2*mh[t-1])
    mh[t]=ifelse(u[5]<dx*gnorm(mhp)/gnorm(mh[t-1])/(3-dx),mhp,mh[t-1])

I could not spot said discrepancy beyond Monte Carlo variability.

overlap, overstreched

Posted in Books, Kids, R, Statistics with tags , , , , , , on June 15, 2020 by xi'an

An interesting challenge on The Riddler on the probability to see a random interval X’ing with all other random intervals when generating n intervals from Dirichlet D(1,1,1). As it happens the probability is always 2/3, whatever n>1, as shown by the R code below (where replicate cannot be replaced by rep!):

qro=function(n,T=1e3){
  quo=function(n){
     xyz=t(apply(matrix(runif(2*n),n),1,sort))
  sum(xyz[,1]<min(xyz[,2])&xyz[,2]>max(xyz[,1]))<0}
  mean(replicate(quo(n),T))}

and discussed more in details on X validated. As only a property on permutations and partitions. (The above picture is taken from this 2015 X validated post.)

the strange occurrence of the one bump

Posted in Books, Kids, R, Statistics with tags , , , , , , , , on June 8, 2020 by xi'an

When answering an X validated question on running an accept-reject algorithm for the Gamma distribution by using a mixture of Beta and drifted (bt 1) Exponential distributions, I came across the above glitch in the fit of my 10⁷ simulated sample to the target, apparently displaying a wrong proportion of simulations above (or below) one.

a=.9
g<-function(T){
  x=rexp(T)
  v=rt(T,1)<0
  x=c(1+x[v],exp(-x/a)[!v])
  x[runif(T)<x^a/x/exp(x)/((x>1)*exp(1-x)+a*(x<1)*x^a/x)*a]}

It took me a while to spot the issue, namely that the output of

  z=g(T)
  while(sum(!!z)<T)z=c(z,g(T))
  z[1:T]

was favouring simulations from the drifted exponential by truncating. Permuting the elements of z before returning solved the issue (as shown below for a=½)!

simulating hazard

Posted in Books, Kids, pictures, Statistics, Travel with tags , , , , , , , , , , , , on May 26, 2020 by xi'an

A rather straightforward X validated question that however leads to an interesting simulation question: when given the hazard function h(·), rather than the probability density f(·), how does one simulate this distribution? Mathematically h(·) identifies the probability distribution as much as f(·),

1-F(x)=\exp\left\{ \int_{-\infty}^x h(t)\,\text{d}t \right\}=\exp\{H(x)\}

which means cdf inversion could be implemented in principle. But in practice, assuming the integral is intractable, what would an exact solution look like? Including MCMC versions exploiting one fixed point representation or the other.. Since

f(x)=h(x)\,\exp\left\{ \int_{-\infty}^x h(t)\,\text{d}t \right\}

using an unbiased estimator of the exponential term in a pseudo-marginal algorithm would work. And getting an unbiased estimator of the exponential term can be done by Glynn & Rhee debiasing. But this is rather costly… Having Devroye’s book under my nose [at my home desk] should however have driven me earlier to the obvious solution to… simply open it!!! A whole section (VI.2) is indeed dedicated to simulations when the distribution is given by the hazard rate. (Which made me realise this problem is related with PDMPs in that thinning and composition tricks are common to both.) Besides the inversion method, ie X=H⁻¹(U), Devroye suggests thinning a Poisson process when h(·) is bounded by a manageable g(·). Or a generic dynamic thinning approach that converges when h(·) is non-increasing.

another Bernoulli factory

Posted in Books, Kids, pictures, R, Statistics with tags , , , , , , on May 18, 2020 by xi'an

A question that came out on X validated is asking for help in figuring out the UMVUE (uniformly minimal variance unbiased estimator) of (1-θ)½ when observing iid Bernoulli B(θ). As it happens, there is no unbiased estimator of this quantity and hence not UMVUE. But there exists a Bernoulli factory producing a coin with probability (1-θ)½ from draws of a coin with probability θ, hence a mean to produce unbiased estimators of this quantity. Although of course UMVUE does not make sense in this sequential framework. While Nacu & Peres (2005) were uncertain there was a Bernoulli factory for θ½, witness their Question #1, Mendo (2018) and Thomas and Blanchet (2018) showed that there does exist a Bernoulli factory solution for θa, 0≤a≤1, with constructive arguments that only require the series expansion of θ½. In my answer to that question, using a straightforward R code, I tested the proposed algorithm, which indeed produces an unbiased estimate of θ½… (Most surprisingly, the question got closed as a “self-study” question, which sounds absurd since it could not occur as an exercise or an exam question, unless the instructor is particularly clueless.)