Archive for cross validated

Gaussian hare and Laplacian tortoise

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , , , , , , on October 19, 2018 by xi'an

A question on X validated on the comparative merits of L¹ versus L² estimation led me to the paper of Stephen Portnoy and Roger Koenker entitled “The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error versus Absolute-Error Estimators”, which I had missed at the time, despite enjoying a subscription to Statistical Science till the late 90’s.. The authors went as far as producing a parody of Granville’s Fables de La Fontaine by sticking Laplace’s and Gauss’ heads on the tortoise and the hare!

I remember rather vividly going through Steve Stigler’s account of the opposition between Laplace’s and Legendre’s approaches, when reading his History of Statistics in 1990 or 1991… Laplace defending the absolute error on the basis of the default double-exponential (or Laplace) distribution, when Legendre and then Gauss argued in favour of the squared error loss on the basis of a defaul Normal (or Gaussian) distribution. (Edgeworth later returned to the support of the L¹ criterion.) Portnoy and Koenker focus mostly on ways of accelerating the derivation of the L¹ regression estimators. (I also learned from the paper that Koenker was one of the originators of quantile regression.)

Bayesians conditioning on sets of measure zero

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , on September 25, 2018 by xi'an

Although I have already discussed this point repeatedly on this ‘Og, I found myself replying to [yet] another question on X validated about the apparent paradox of conditioning on a set of measure zero, as for instance when computing

P(X=.5 | |X|=.5)

which actually has nothing to do with Bayesian inference or Bayes’ Theorem, but is simply wondering about the definition of conditional probability distributions. The OP was correct in stating that

P(X=x | |X|=x)

was defined up to a set of measure zero. And even that

P(X=.5 | |X|=.5)

could be defined arbitrarily, prior to the observation of |X|. But once |X| is observed, say to take the value 0.5, there is a zero probability that this value belongs to the set of measure zero where one defined

P(X=x | |X|=x)

arbitrarily. A point that always proves delicate to explain in class…!

Riddler collector

Posted in Statistics with tags , , , , , , , on September 22, 2018 by xi'an

Once in a while a fairly standard problem makes it to the Riddler puzzle of the week. Today, it is the coupon collector problem, explained by W. Huber on X validated. (W. Huber happens to be the top contributor to this forum, with over 2000 answers, and the highest reputation closing on 200,000!) With nothing (apparently) unusual: coupons [e.g., collecting cards] come in packs of k=10 with no duplicate, and there are n=100 different coupons. What is the expected number one has to collect before getting all of the n coupons?  W. Huber provides an R code to solve the recurrence on the expectation, obtained by conditioning on the number m of different coupons already collected, e(m,n,k) and hence on the remaining number of collect, with an Hypergeometric distribution for the number of new coupons in the next pack. Returning 25.23 packs on average. As is well-known, the average number of packs to complete one’s collection with the final missing card is expensively large, with more than 5 packs necessary on average. The probability distribution of the required number of packs has actually been computed by Laplace in 1774 (and then again by Euler in 1785).

approximative Laplace

Posted in Books, R, Statistics with tags , , , , on August 18, 2018 by xi'an

I came across this question on X validated that wondered about one of our examples in Monte Carlo Statistical Methods. We have included a section on Laplace approximations in the Monte Carlo integration chapter, with a bit of reluctance on my side as this type of integral approximation does not directly connect to Monte Carlo methods. Even less in the case of the example as we aimed at replacing a coverage probability for a Gamma distribution with a formal Laplace approximation. Formal due to the lack of asymptotics, besides the length of the interval (a,b) which probability is approximated. Hence, on top of the typos, the point of the example is not crystal clear, in that it does not show much more than the step-function approximation to the function converges as the interval length gets to zero. For instance, using instead a flat approximation produces an almost as good approximation:

>  xact(5,2,7,9)
[1] 0.1933414
> laplace(5,2,7,9)
[1] 0.1933507
> flat(5,2,7,9)
[1] 0.1953668

What may be more surprising is the resilience of the approximation as the width of the interval increases:

> xact(5,2,5,11)
[1] 0.53366
> lapl(5,2,5,11)
[1] 0.5354954
> plain(5,2,5,11)
[1] 0.5861004
> quad(5,2,5,11)
[1] 0.434131

optimal approximations for importance sampling

Posted in Mountains, pictures, Statistics, Travel with tags , , , , , , , , , , , on August 17, 2018 by xi'an

“…building such a zero variance estimator is most of the times not practical…”

As I was checking [while looking at Tofino inlet from my rental window] on optimal importance functions following a question on X validated, I came across this arXived note by Pantaleoni and Heitz, where they suggest using weighted sums of step functions to reach minimum variance. However, the difficulty with probability densities that are step functions is that they necessarily have a compact support, which thus make them unsuitable for targeted integrands with non-compact support. And making the purpose of the note and the derivation of the optimal weights moot. It points out its connection with the reference paper of Veach and Guibas (1995) as well as He and Owen (2014), a follow-up to the other reference paper by Owen and Zhou (2000).

hitting a wall

Posted in Books, Kids, R, Statistics, University life with tags , , , , , on July 5, 2018 by xi'an

Once in a while, or a wee bit more frequently (!), it proves impossible to communicate with a contributor of a question on X validated. A recent instance was about simulating from a multivariate kernel density estimate where the kernel terms at x¹,x²,… are Gaussian kernels applied to the inverses of the norms |x-x¹|, |x-x²|,… rather than to the norms as in the usual formulation. The reason for using this type of kernel is unclear, as it certainly does not converge to an estimate of the density of the sample x¹,x²,…  as the sample size grows, since it excludes a neighbourhood of each point in the sample. Since the kernel term tends to a non-zero constant at infinity, the support of the density estimate is restricted to the hypercube [0,1]x…x[0,1], again with unclear motivations. No mention being made of the bandwidth adopted for this kernel. If one takes this exotic density as a given, the question is rather straightforward as the support is compact, the density bounded and a vanilla accept-reject can be implemented. As illustrated by the massive number of comments on that entry, it did not work as the contributor adopted a fairly bellicose attitude about suggestions from moderators on that site and could not see the point in our requests for clarification, despite plotting a version of the kernel that had its maximum [and not its minimum] at x¹… After a few attempts, including writing a complete answer, from which the above graph is taken (based on an initial understanding of the support being for (x-x¹), …), I gave up and deleted all my entries.On that question.

are there a frequentist and a Bayesian likelihoods?

Posted in Statistics with tags , , , , , , , , , , on June 7, 2018 by xi'an

A question that came up on X validated and led me to spot rather poor entries in Wikipedia about both the likelihood function and Bayes’ Theorem. Where unnecessary and confusing distinctions are made between the frequentist and Bayesian versions of these notions. I have already discussed the later (Bayes’ theorem) a fair amount here. The discussion about the likelihood is quite bemusing, in that the likelihood function is the … function of the parameter equal to the density indexed by this parameter at the observed value.

“What we can find from a sample is the likelihood of any particular value of r, if we define the likelihood as a quantity proportional to the probability that, from a population having the particular value of r, a sample having the observed value of r, should be obtained.” R.A. Fisher, On the “probable error’’ of a coefficient of correlation deduced from a small sample. Metron 1, 1921, p.24

By mentioning an informal side to likelihood (rather than to likelihood function), and then stating that the likelihood is not a probability in the frequentist version but a probability in the Bayesian version, the W page makes a complete and unnecessary mess. Whoever is ready to rewrite this introduction is more than welcome! (Which reminded me of an earlier question also on X validated asking why a common reference measure was needed to define a likelihood function.)

This also led me to read a recent paper by Alexander Etz, whom I met at E.J. Wagenmakers‘ lab in Amsterdam a few years ago. Following Fisher, as Jeffreys complained about

“..likelihood, a convenient term introduced by Professor R.A. Fisher, though in his usage it is sometimes multiplied by a constant factor. This is the probability of the observations given the original information and the hypothesis under discussion.” H. Jeffreys, Theory of Probability, 1939, p.28

Alexander defines the likelihood up to a constant, which causes extra-confusion, for free!, as there is no foundational reason to introduce this degree of freedom rather than imposing an exact equality with the density of the data (albeit with an arbitrary choice of dominating measure, never neglect the dominating measure!). The paper also repeats the message that the likelihood is not a probability (density, missing in the paper). And provides intuitions about maximum likelihood, likelihood ratio and Wald tests. But does not venture into a separate definition of the likelihood, being satisfied with the fundamental notion to be plugged into the magical formula