Estimating means of bounded random variables by betting

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , , on April 9, 2023 by xi'an

Ian Waudby-Smith and Aaditya Ramdas are presenting next month a Read Paper to the Royal Statistical Society in London on constructing a conservative confidence interval on the mean of a bounded random variable. Here is an extended abstract from within the paper:

For each m ∈ [0, 1], we set up a “fair” multi-round game of statistician
against nature whose payoff rules are such that if the true mean happened
to equal m, then the statistician can neither gain nor lose wealth in
expectation (their wealth in the m-th game is a nonnegative martingale),
but if the mean is not m, then it is possible to bet smartly and make
money. Each round involves the statistician making a bet on the next
observation, nature revealing the observation and giving the appropriate
(positive or negative) payoff to the statistician. The statistician then plays
all these games (one for each m) in parallel, starting each with one unit of
wealth, and possibly using a different, adaptive, betting strategy in each.
The 1 − α confidence set at time t consists of all m 2 [0, 1] such that the
statistician’s money in the corresponding game has not crossed 1/α. The
true mean μ will be in this set with high probability.

I read the paper on the flight back from Venice and was impressed by its universality, especially for a non-asymptotic method, while finding the expository style somewhat unusual for Series B, with notions late into being defined if at all defined. As an aside, I also enjoyed the historical connection to Jean Ville‘s 1939 PhD thesis (examined by Borel, Fréchet—his advisor—and Garnier) on a critical examination of [von Mises’] Kollektive. (The story by Glenn Shafer of Ville’s life till the war is remarkable, with the de Beauvoir-Sartre couple making a surprising and rather unglorious appearance!). Himself inspired by a meeting with Wald while in Berlin. The paper remains quite allusive about Ville‘s contribution, though, while arguing about its advance respective to Ville’s work… The confidence intervals (and sequences) depend on a supermartingale construction of the form

$M_t(m):=\prod_{i=1}^t \exp\left\{ \lambda_i(X_i-m)-v_i\psi(\lambda_i)\right\}$

which allows for a universal coverage guarantee of the derived intervals (and can optimised in λ). As I am getting confused by that point about the overall purpose of the analysis, besides providing an efficient confidence construction, and am lacking in background about martingales, betting, and sequential testing, I will not contribute to the discussion. Especially since ChatGPT cannot help me much, with its main “criticisms” (which I managed to receive while in Italy, despite the Italian Government banning the chabot!)

However, there are also some potential limitations and challenges to this approach. One limitation is that the accuracy of the method is dependent on the quality of the prior distribution used to set the odds. If the prior distribution is poorly chosen, the resulting estimates may be inaccurate. Additionally, the method may not work well for more complex or high-dimensional problems, where there may not be a clear and intuitive way to set up the betting framework.

and

Another potential consequence is that the use of a betting framework could raise ethical concerns. For example, if the bets are placed on sensitive or controversial topics, such as medical research or political outcomes, there may be concerns about the potential for manipulation or bias in the betting markets. Additionally, the use of betting as a method for scientific or policy decision-making may raise questions about the appropriate role of gambling in these contexts.

being totally off the radar… (No prior involved, no real-life consequence for betting, no gambling.)

statistics for making decisions [book review]

Posted in Books, Statistics with tags , , , , , , , , , , , , on March 7, 2022 by xi'an

I bought this book [or more precisely received it from CRC Press as a ({prospective} book) review reward] as I was interested in the author’s perspectives on actual decision making (and unaware of the earlier Statistical Decision Theory book he had written in 2013). It is intended for a postgraduate semester course and  “not for a beginner in statistics”. Exercises with solutions are included in each chapter (with some R codes in the solutions). From Chapter 4 onwards, the “Further reading suggestions” are primarily referring to papers and books written by the author, as these chapters are based on his earlier papers.

“I regard hypothesis testing as a distraction from and a barrier to good statistical practice. Its ritualised application should be resisted from the position of strength, by being well acquainted with all its theoretical and practical aspects. I very much hope (…) that the right place for hypothesis testing is in a museum, next to the steam engine.”

The first chapter exposes the shortcomings of hypothesis testing for conducting decision making, in particular by ignoring the consequences of the decisions. A perspective with which I agree, but I fear the subsequent developments found in the book remain too formalised to be appealing, reverting to the over-simplification found in Neyman-Pearson theory. The second chapter is somewhat superfluous for a book assuming a prior exposure to statistics, with a quick exposition of the frequentist, Bayesian, and … fiducial paradigms. With estimators being first defined without referring to a specific loss function. And I find the presentation of the fiducial approach rather shaky (if usual). Esp. when considering fiducial perspective to be used as default Bayes in the subsequent chapters. I also do not understand the notation (p.31)

$P(\hat\theta

outside of a Bayesian (or fiducial?) framework. (I did not spot typos aside from the traditional “the the” duplicates, with at least six occurences!)

The aforementioned subsequent chapters are not particularly enticing as they cater to artificial loss functions and engage into detailed derivations that do not seem essential. At times they appear to be nothing more than simple calculus exercises. The very construction of the loss function, which I deem critical to implement statistical decision theory, is mostly bypassed. The overall setting is also frighteningly unidimensional. In the parameter, in the statistic, and in the decision. Covariates only appear in the final chapter which appears to have very little connection with decision making in that the loss function there is the standard quadratic loss, used to achieve the optimal composition of estimators, rather than selecting the best model. The book is also missing in practical or realistic illustrations.

“With a bit of immodesty and a tinge of obsession, I would like to refer to the principal theme of this book as a paradigm, ascribing to it as much importance and distinction as to the frequentist and Bayesian paradigms”

The book concludes with a short postscript (pp.247-249) reproducing the introducing paragraphs about the ill-suited nature of hypothesis testing for decision-making. Which would have been better supported by a stronger engagement into elicitating loss functions and quantifying the consequences of actions from the clients…

[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Book Review section in CHANCE.]

the biggest bluff [not a book review]

Posted in Books with tags , , , , , , , , , , , on August 14, 2020 by xi'an

It came as a surprise to me that the book reviewed in the book review section of Nature of 25 June was a personal account of a professional poker player, The Biggest Bluff by Maria Konnikova.  (Surprise enough to write a blog entry!) As I see very little scientific impetus in studying the psychology of poker players and the associated decision making. Obviously, this is not a book review, but a review of the book review. (Although the NYT published a rather extensive extract of the book, from which I cannot detect anything deep from a game-theory viewpoint. Apart from the maybe-not-so-deep message that psychology matters a lot in poker…) Which does not bring much incentive for those uninterested (or worse) in money games like poker. Even when “a heap of Bayesian model-building [is] thrown in”, as the review mixes randomness and luck, while seeing the book as teaching the reader “how to play the game of life”, a type of self-improvement vending line one hardly expects to read in a scientific journal. (But again I have never understood the point in playing poker…)

Colin Blyth (1922-2019)

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , on March 19, 2020 by xi'an