Archive for detailed balance

transformation MCMC

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , on January 3, 2022 by xi'an

For reasons too long to describe here, I recently came across a 2013 paper by Dutta and Bhattacharya (from ISI Kolkata) entitled MCMC based on deterministic transforms, which sounded a bit dubious until I realised the deterministic label apply to the choice of the transformation and not to the Metropolis-Hastings proposal… The core of the proposed method is to make a proposal that simultaneously considers a move and its inverse, namely from x to either x’=T(x,ε) or x”=T⁻¹(x,ε) , where ε is an independent random noise, possibly degenerated to a manifold of lesser dimension. Due to the symmetry the acceptance probability is then a ratio of the target, multiplied by the x-Jacobian of T (as in reversible jump). I tried the method on a mixture of Gamma distributions target (in red) with an Exponential scale change and the resulting sample indeed fitted said target.

The authors even make an argument in favour of a unidimensional noise, although this amounts to running an implicit Gibbs sampler. Argument based on a reduced simulation cost for ε, albeit the full dimensional transform x’=T(x,ε) still requires to be computed. And as noted in the paper this also requires checking for irreducibility. The claim for higher efficiency found therein is thus mostly unsubstantiated…

“The detailed balance requirement also demands that, given x, the regions covered by the forward and the backward transformations are disjoint.”

The above statement is also surprising in that the generic detailed balance condition does not impose such a restriction.

 

bandits for doubly intractable posteriors

Posted in Statistics with tags , , , , , , , , on April 17, 2019 by xi'an

Last Friday, Guanyang Wang arXived a paper on the use of multi-armed bandits (hence the reference to the three bandits) to handle intractable normalising constants. The bandit compares or mixes Møller et al. (2006) auxiliary variable solution with Murray et al. (2006) exchange algorithm. Which are both special cases of pseudo-marginal MCMC algorithms. In both cases, the auxiliary variables produce an unbiased estimator of the ratio of the constants. Rather than the ratio of two unbiased estimators as in the more standard pseudo-marginal MCMC. The current paper tries to compare the two approaches based on the variance of the ratio estimate, but cannot derive a general ordering. The multi-armed bandit algorithm exploits both estimators of the acceptance ratio to pick the one that is almost the largest, almost because there is a correction for validating the step by detailed balance. The bandit acceptance probability is the maximum [over the methods] of the minimum [over the time directions] of the original acceptance ratio. While this appears to be valid, note that the resulting algorithm implies four times as many auxiliary variates as the original ones, which makes me wonder at the gain when compared with a parallel implementation of these methods, coupled at random times. (The fundamental difficulty of simulating from likelihoods with an unknown normalising constant remains, see p.4.)

slice sampling revisited

Posted in Books, pictures, Statistics with tags , , , , , , , , on April 15, 2016 by xi'an

Figure 1 (c.) Neal, 2003Thanks to an X validated question, I re-read Radford Neal’s 2003 Slice sampling paper. Which is an Annals of Statistics discussion paper, and rightly so. While I was involved in the editorial processing of this massive paper (!), I had only vague memories left about it. Slice sampling has this appealing feature of being the equivalent of random walk Metropolis-Hastings for Gibbs sampling, without the drawback of setting a scale for the moves.

“These slice sampling methods can adaptively change the scale of changes made, which makes them easier to tune than Metropolis methods and also avoids problems that arise when the appropriate scale of changes varies over the distribution  (…) Slice sampling methods that improve sampling by suppressing random walks can also be constructed.” (p.706)

One major theme in the paper is fighting random walk behaviour, of which Radford is a strong proponent. Even at the present time, I am a bit surprised by this feature as component-wise slice sampling is exhibiting clear features of a random walk, exploring the subgraph of the target by random vertical and horizontal moves. Hence facing the potential drawback of backtracking to previously visited places.

“A Markov chain consisting solely of overrelaxed updates might not be ergodic.” (p.729)

Overrelaxation is presented as a mean to avoid the random walk behaviour by removing rejections. The proposal is actually deterministic projecting the current value to the “other side” of the approximate slice. If it stays within the slice it is accepted. This “reflection principle” [in that it takes the symmetric wrt the centre of the slice] is also connected with antithetic sampling in that it induces rather negative correlation between the successive simulations. The last methodological section covers reflective slice sampling, which appears as a slice version of Hamiltonian Monte Carlo (HMC). Given the difficulty in implementing exact HMC (reflected in the later literature), it is no wonder that Radford proposes an approximation scheme that is valid if somewhat involved.

“We can show invariance of this distribution by showing (…) detailed balance, which for a uniform distribution reduces to showing that the probability density for x¹ to be selected as the next state, given that the current state is x0, is the same as the probability density for x⁰ to be the next state, given that x¹ is the current state, for any states x⁰ and x¹ within [the slice] S.” (p.718)

In direct connection with the X validated question there is a whole section of the paper on implementing single-variable slice sampling that I had completely forgotten, with a collection of practical implementations when the slice

S={x; u < f(x) }

cannot be computed in an exact manner. Like the “stepping out” procedure. The resulting set (interval) where the uniform simulation in x takes place may well miss some connected component(s) of the slice. This quote may sound like a strange argument in that the move may well leave a part of the slice off and still satisfy this condition. Not really since it states that it must hold for any pair of states within S… The very positive side of this section is to allow for slice sampling in cases where the inversion of u < f(x) is intractable. Hence with a strong practical implication. The multivariate extension of the approximation procedure is more (potentially) fraught with danger in that it may fell victim to a curse of dimension, in that the box for the uniform simulation of x may be much too large when compared with the true slice (or slice of the slice). I had more of a memory of the “trail of crumbs” idea, mostly because of the name I am afraid!, which links with delayed rejection, as indicated in the paper, but seems awfully delicate to calibrate.

delayed acceptance [alternative]

Posted in Books, Kids, Statistics, University life with tags , , , , , , on October 22, 2014 by xi'an

In a comment on our Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching paper, Philip commented that he had experimented with an alternative splitting technique retaining the right stationary measure: the idea behind his alternative acceleration is again (a) to divide the target into bits and (b) run the acceptance step by parts, towards a major reduction in computing time. The difference with our approach is to represent the  overall acceptance probability

\min_{k=0,..,d}\left\{\prod_{j=1}^k \rho_j(\eta,\theta),1\right\}

and, even more surprisingly than in our case, this representation remains associated with the right (posterior) target!!! Provided the ordering of the terms is random with a symmetric distribution on the permutation. This property can be directly checked via the detailed balance condition.

In a toy example, I compared the acceptance rates (acrat) for our delayed solution (letabin.R), for this alternative (letamin.R), and for a non-delayed reference (letabaz.R), when considering more and more fractured decompositions of a Bernoulli likelihood.

> system.time(source("letabin.R"))
user system elapsed
225.918 0.444 227.200
> acrat
[1] 0.3195 0.2424 0.2154 0.1917 0.1305 0.0958
> system.time(source("letamin.R"))
user system elapsed
340.677 0.512 345.389
> acrat
[1] 0.4045 0.4138 0.4194 0.4003 0.3998 0.4145
> system.time(source("letabaz.R"))
user system elapsed
49.271 0.080 49.862
> acrat
[1] 0.6078 0.6068 0.6103 0.6086 0.6040 0.6158

A very interesting outcome since the acceptance rate does not change with the number of terms in the decomposition for the alternative delayed acceptance method… Even though it logically takes longer than our solution. However, the drawback is that detailed balance implies picking the order at random, hence loosing on the gain in computing the cheap terms first. If reversibility could be bypassed, then this alternative would definitely get very appealing!

no U-turn sampler [guest slides]

Posted in Statistics with tags , , , , , on April 17, 2013 by xi'an

Yesterday at the “Bayes in Paris” reading group, my student Marco Banterle presented his analysis of the NUTS paper by Marc Hoffmann and Andrew Gelman I discussed on the ‘Og a while ago. Here are his slides, which could have kept occupied for the whole afternoon, had not Michael started his course one hour later!

%d bloggers like this: