Archive for Diophanti Alexandrini Arithmeticorum

Le Monde puzzle [#1164]

Posted in Books, Kids, R with tags , , , , , , , , , , , , , on November 16, 2020 by xi'an

The weekly puzzle from Le Monde is quite similar to older Diophantine episodes (I find myself impossible to point out):

Give the maximum integer that cannot be written as 105x+30y+14z. Same question for 105x+70y+42z+30w.

These are indeed Diophantine equations and the existence of a solution is linked with Bézout’s Lemma. Take the first equation. Since 105 and 30 have a greatest common divisor equal to 3×5=15, there exists a pair (x⁰,y⁰) such that

105 x⁰ + 30 y⁰ = 15

hence a solution to every equation of the form

105 x + 30 y = 15 a

for any relative integer a. Similarly, since 14 and 15 are co-prime,

there exists a pair (a⁰,b⁰) such that

15 a⁰ + 14 b⁰ = 1

hence a solution to every equation of the form

15 a⁰ + 14 b⁰ = c

for every relative integer c. Meaning 105x+30y+14z=c can be solved in all cases. The same result applies to the second equation. Since algorithms for Bézout’s decomposition are readily available, there is little point in writing an R code..! However, the original question must impose the coefficients to be positive, which of course kills the Bézout’s identity argument. Stack Exchange provides the answer as the linear Diophantine problem of Frobenius! While there is no universal solution for three and more base integers, Mathematica enjoys a FrobeniusNumber solver. Producing 271 and 383 as the largest non-representable integers. Also found by my R code

  if((a<-sum(!!i))==sum(!!e))sol=(sum(i*e)==x) else{sol=0
    for(j in 0:(x/e[a+1]))sol=max(sol,o(c(i,j),e,x))}
a=(min(e)-1)*(max(e)-1)#upper bound
M=b=((l<-length(e)-1)*prod(e))^(1/l)-sum(e)#lower bound
for(x in a:b){sol=0
for(i in 0:(x/e[1]))sol=max(sol,o(i,e,x))

(And this led me to recover the earlier ‘Og entry on the coin problem! As of last November.) The published solution does not bring any useful light as to why 383 is the solution, except for demonstrating that 383 is non-representable and any larger integer is representable.

linear Diophantine equations

Posted in Statistics with tags , , , , , , on May 10, 2018 by xi'an

When re-expressed in maths terms, the current Riddler is about finding a sequence x⁰,x¹,…,x⁷ of integers such that



which turns into a linear equation with integer valued solutions, or a system of linear Diophantine equation. Which can be easily solved by brute-force R coding:

for (i in 1:7) A[i,i]=6
for (i in 1:6) A[i,i+1]=-7
for (x in 1:1e6){
  if (max(abs(zol-round(zol)))<1e-3) print(x)}
x=39990 #x8=
7*solve(a=A,b=c(rep(1,6),7*x))[1]+1 #x0

which produces x⁰=823537. But it would be nicer to directly solve the linear system under the constraint. For instance, the inverse of the matrix A above is an upper triangular matrix with (upper-)diagonals

1/6, 7/6², 7²/6³,…,7⁶/6⁷

but this does not help considerably, except for x⁸ to be solutions to 7 equations involving powers of 6 and 7… This system of equations can be solved by successive substitutions but this still feels very pedestrian!