Archive for directed acyclic graphs

more multiple proposal MCMC

Posted in Books, Statistics with tags , , , , , , , on July 26, 2018 by xi'an

Luo and Tjelmeland just arXived a paper on a new version of multiple-try Metropolis Hastings, the addendum being in defining the additional proposed copies via a dependence graph like (a) above, with one version from the target and all others from operational and conditional proposal kernels. Respecting the dependence graph, as in (b). As I did, you may then wonder where both the graph and the conditional do come from. Which reminds me of the pseudo-posteriors of Carlin and Chib (1995), even though this is not terribly connected. Green (1995).) (But not disconnected either since the authors mention But, given the graph, following a Gibbs scheme, one of the 17 nodes is chosen as generated from the target, using the proper conditional on that index [which is purely artificial from the point of view of the original simulation problem!]. As noted above, the graph is an issue, but since it is artificial, it can be devised to either allow for quasi-independence between the proposed values or on the opposite to induce long range dependence, which corresponds to conducting multiple MCMC steps before reaching the end nodes, a feature that is very appealing in my opinion. And reminds me of prefetching. (As I am listening to Nicolas Chopin’s lecture in Warwick at the moment, there also seems to be a connection with pMCMC.) Still, I remain unclear as to the devising of the graph of dependent proposals, as its depth should be somehow connected with the mixing properties of the original proposal. Gains in convergence may thus come at a high cost at the construction stage.

chain event graphs [RSS Midlands seminar]

Posted in pictures, Statistics, University life with tags , , , , , , , , , , on October 16, 2013 by xi'an

img_1836Last evening, I attended the RSS Midlands seminar here in Warwick. The theme was chain event graphs (CEG), As I knew nothing about them, it was worth my time listening to both speakers and discussing with Jim Smith afterwards. CEGs are extensions of Bayes nets with originally many more nodes since they start with the probability tree involving all modalities of all variables. Intensive Bayesian model comparison is then used to reduce the number of nodes by merging modalities having the same children or removing variables with no impact on the variable of interest. So this is not exactly a new Bayes net based on modality dummies as nodes (my original question). This is quite interesting, esp. in the first talk illustration of using missing value indicators as a supplementary variable (to determine whether or not data is missing at random). I also wonder how much of a connection there is with variable length Markov chains (either as a model or as a way to prune the tree). A last vague idea is a potential connection with lumpable Markov chains, a concept I learned from Kemeny & Snell (1960): a finite Markov chain is lumpable if by merging two or more of its states it remains a Markov chain. I do not know if this has ever been studied from a statistical point of view, i.e. testing for lumpability, but this sounds related to the idea of merging modalities of some variables in the probability tree…