## spacings on a torus

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , on March 22, 2018 by xi'an

While in Brussels last week I noticed an interesting question on X validated that I considered in the train back home and then more over the weekend. This is a question about spacings, namely how long on average does it take to cover an interval of length L when drawing unit intervals at random (with a torus handling of the endpoints)? Which immediately reminded me of Wilfrid Kendall (Warwick) famous gif animation of coupling from the past via leaves covering a square region, from the top (forward) and from the bottom (backward)…

The problem is rather easily expressed in terms of uniform spacings, more specifically on the maximum spacing being less than 1 (or 1/L depending on the parameterisation). Except for the additional constraint at the boundary, which is not independent of the other spacings. Replacing this extra event with an independent spacing, there exists a direct formula for the expected stopping time, which can be checked rather easily by simulation. But the exact case appears to be add a few more steps to the draws, 3/2 apparently. The following graph displays the regression of the Monte Carlo number of steps over 10⁴ replicas against the exact values:

## maximum of a Dirichlet vector

Posted in Books, Statistics with tags , , , , , , , on September 26, 2016 by xi'an

An intriguing question on Stack Exchange this weekend, about the distribution of max{p¹,p²,…}the maximum component of a Dirichlet vector Dir(a¹,a²,…) with arbitrary hyper-parameters. Writing the density of this random variable is feasible, using its connection with a Gamma vector, but I could not find a closed-form expression. If there is such an expression, it may follow from the many properties of the Dirichlet distribution and I’d be interested in learning about it. (Very nice stamp, by the way! I wonder if the original formula was made with LaTeX…)